
Pvote Software Review Assurance Document

Ka-Ping Yee
ping@zesty.ca

March 22, 2007

Contents

1 Scope 3
1.1 Overview . 3
1.2 Responsibilities . 3
1.3 Assumptions . 4
1.4 Threats in scope . 5
1.5 Threats out of scope . 5
1.6 Other questions to consider . 6

2 Ballot Definition Format 7
2.1 Overview . 7
2.2 Serialization . 8

2.2.1 Primitive Types . 8
2.2.2 Compound Types . 8

2.3 Model . 10
2.3.1 Groups . 10
2.3.2 Pages . 11

2.4 Text . 14
2.5 Audio . 14
2.6 Video . 14
2.7 Validity constraints . 15

3 Pthin 18
3.1 Types . 18
3.2 Namespaces . 20
3.3 Statements . 20
3.4 Functions . 21
3.5 Classes and objects . 22
3.6 Built-in functions and methods . 22
3.7 Readable stream objects . 23

4 Pygame 24
4.1 Events . 24
4.2 Audio . 25
4.3 Video . 26

5 SHA 27

1

CONTENTS 2

6 Pvote 28
6.1 Design . 28
6.2 Source Code . 30

6.2.1 pvote . 31
6.2.2 Ballot.py . 32
6.2.3 verifier.py . 35
6.2.4 Navigator.py . 39
6.2.5 Audio.py . 43
6.2.6 Video.py . 44
6.2.7 Printer.py . 45

7 Correctness claims 46
7.1 No negative integers . 46
7.2 Navigator starts on page 0 in state 0 46
7.3 Ballot is committed on the last page 46
7.4 Overvoting is impossible . 47
7.5 Contest options cannot be selected twice 47
7.6 Summary of responsibilities established 47

A Glossary 51

B Deployment example 52
B.1 Before election day . 52
B.2 Election day before polls open . 52
B.3 Election day with polls open . 53
B.4 Election day after polls close . 53

C WAV audio file format 54

1. Scope 3

Chapter 1

Scope

This document is a preparatory guide for reviewers of the Pvote software for voting
machines, which is based on the prerendered user interface approach. Pvote is
implemented in a subset of Python.

Pvote, the subject of this review, is not a complete voting system. It is just
the component responsible for presenting the ballot to the voter and recording
the voter’s selections. (The EVT paper on prerendered user interfaces for voting
argues that this is a crucial component to get right because the voting interactions
of individual voters must be kept secret, whereas other parts of the process can be
made publishable.) Voter registration, vote tallying, and administrative functions
are not part of Pvote.

The following sections set out expectations for the scope of the review based on
Pvote’s design assumptions and design intent. However, as reviewers, if you find
it necessary to look beyond the scope suggested here, you should feel free to direct
the course of the review as you see fit.

1.1 Overview

Pvote is intended to be small and not changed often. The election parameters and
the voting user interface are described by a ballot definition file that Pvote accepts
as input. Pvote is flexible enough to support a wide range of election types and
interface designs, just by using different ballot definition files. It can be considered
a virtual machine for a high-level user interface specification language.

Pvote could be used as the core user interface component of a cryptographically
auditable voting system, an electronic ballot marking or printing device, a DRE
with a paper or audio audit trail, or (gasp!) a paperless DRE.

1.2 Responsibilities

In the following, committed means voter selections are finalized, either by printing
them onto a paper ballot or recording them in a DRE. A voting session consists of
the time from when a particular voter begins using a voting machine until the ballot
is committed or the voter abandons the machine. The ballot definition file is a file
that describes the ballot parameters and the voting user interface.

1. Scope 4

We intend to establish that Pvote can be relied upon to:

R1. Not abort during a voting session.
R2. Remain responsive during a voting session.
R3. Become inert after a ballot is committed.
R4. Display a completion screen when and only when a ballot is committed, and

continue to display this screen until the next session begins.
R5. Exhibit the same deterministic behaviour in all voting sessions that use the

same ballot definition.
R6. Present instructions, contests, and options as specified in the ballot definition.
R7. Navigate among instructions, contests, and options as specified in the ballot

definition.
R8. Select and deselect options according to user actions as specified in the ballot

definition.
R9. Prevent overvotes.

R10. Correctly indicate whether options are selected when the ballot definition
calls for such indication.

R11. Correctly indicate how many options are selected when the ballot definition
calls for such indication.

R12. Correctly indicate which options are selected when the ballot definition calls
for such indication.

R13. Commit the selections the voter made.

1.3 Assumptions

A1. The voting machine software (ostensibly Pvote) is handed over for review
before the election.

A2. The software runs intact on the voting machines, unchanged from what was
reviewed.

A3. Pvote is started once per voting session.
A4. Only authorized voters can begin voting sessions.
A5. Ballot definition files are published for review and testing before the election.
A6. For each voting session, the correct ballot definition is selected and provided

to Pvote.
A7. Ballot definitions are provided to Pvote intact, unchanged from what was

reviewed.
A8. In the ballot definition, there is at least one page, and each page has at least

one state.
A9. No ballot definition contains more than two billion elements in any list (a

specification of the ballot definition format is given below).
A10. The software platform functions correctly (specifications of the expected

behaviour of the language and supporting software libraries are given
below).

A11. The voting machine hardware functions correctly.

1. Scope 5

1.4 Threats in scope

• Voters. Voters can interact with Pvote using the touchscreen and keypad.
Is there any sequence of interactions that can cause Pvote to allow casting
of multiple ballots (R3), allow casting of an invalid ballot (R9), mislead
pollworkers about the casting of a ballot (R4), or violate voter privacy (R5)?

• Bugs. Though bugs are not usually considered security threats in the sense
of being willful attackers, they do threaten the integrity of the election. Can
any valid ballot definitions or user interactions ever cause Pvote to behave
incorrectly (R1, R2, R6, R7, R8, R10, R11, R12, R13)?

• Insiders among voting software suppliers. Pvote could be modified to
contain backdoors or hidden weaknesses before being handed over for
review and installation. Could an attacker make effective changes that would
go unnoticed by reviewers? What effect does Pvote have on the difficulty
of performing or detecting such subversion? (This is the “meta-threat”
corresponding to the two preceding items.)

• Insiders among election officials. Ballot definitions could be designed or
altered to contain the wrong information or bias the vote. Could an attacker
subvert ballot definitions in a way that would go unnoticed by reviewers
and testers? What effect does Pvote have on the difficulty of performing or
detecting such subversion?

1.5 Threats out of scope

• Insiders among pollworkers. We are relying upon pollworkers not to give
voters multiple sessions (A3), not to let unauthorized people vote (A4), and
to select the correct ballot style for each voter (A6). We assume election
procedures make it hard for an insider working alone to violate these rules.

• Faulty or subverted hardware. This is a software review (A10).
• Tampering with the software distribution. We assume the software is not

altered between review and use (A2).
• Tampering with the ballot definition. We assume the ballot definition is not

altered between review and use (A7).
• Tampering with cast vote records. Protecting the integrity of vote records

after ballots are committed is beyond Pvote’s purview.
• Poor ballot design. We don’t claim that using Pvote eliminates accessibility

or usability problems, though testing with the published ballot definitions
might help reveal some of these problems in time to address them.

1. Scope 6

1.6 Other questions to consider

Depending on the time available, we may be able to look at a broader set of
questions surrounding Pvote.

Testing is an issue closely related to security and reliability that may be worth
examining. How would Pvote affect the testing process?

• Does Pvote change the required amount of testing?
• Does Pvote change the level of confidence attainable through testing?
• Does Pvote increase or decrease the effectiveness of existing kinds of testing,

such as:

– unit testing
– system testing
– manual testing
– automated testing
– parallel testing
– logic and accuracy testing?

• Does Pvote make feasible any new kinds of tests?

How does using Pvote affect the ability to mix and match components from
different implementors, and what influence would this have on testing and
reliability?

How does using Pvote affect the difficulty of reviewing the voting system?
Post-election audits are also an important diagnostic and recovery tool. How

does Pvote affect the ability to audit the voting system?
Finally, there is the question of integration with existing and proposed systems

and practices. Running an election requires many other components in addition
to Pvote. How would or could Pvote interoperate with these other components?
How does it compare with, and interoperate with, other software-independent
approaches to electronic voting?

2. Ballot Definition Format 7

Chapter 2

Ballot Definition Format

The ballot definition is central to Pvote’s design, as it specifies all the capabilities of
the voting user interface. The ballot definition describes a state machine where each
transition edge is triggered by a user action under specified conditions or by an idle
timeout. Traversing an edge can cause options to be selected or deselected. Audio
feedback sequences are associated with states and with edges between states.

2.1 Overview

The ballot definition contains four parts:

• Ballot model: structure of the ballot and interaction flow of the user interface.
• Text data: information for the printer.
• Audio data: sound data for the audio driver.
• Video data: image and layout data for the video driver.

The ballot model consists of:

• Groups: sets of options for the voter to select.
• Pages: the coarse-grained unit of navigation; a full-screen display state.

Pages contain finer-grained states for navigation within a page. Both pages
and states have bindings, which map keypresses and screen touches to
selection and navigation actions. Pages and states specify audio feedback in
terms of sequences of audio segments. Both bindings and segments may be
subject to conditions concerning the voter’s current selections. Finally, areas
are parts of the page that change according to the voter’s selections.

The text data contains the names of the contests and candidates. The audio data
contains a collection of sound clips. The video data contains:

• Layouts: the visual appearance of a page (each layout corresponds to one
page). The layout contains a full-screen image for the page. It also specifies
the locations of targets (screen regions that respond to touch) and slots
(screen regions where sprites are pasted). Targets invoke bindings; areas are
associated with slots.

• Sprites: smaller images for pasting over variable parts of the display.

2. Ballot Definition Format 8

The next few sections will describe in more detail the contents of these data
structures and what they mean, and set out the constraints that have to be met
for a ballot definition file to be considered valid.

2.2 Serialization

This section describes how data types are recorded in the ballot definition file.

2.2.1 Primitive Types

The data structures are built up from the following types:

• int: An integer in the range from 0 to 4294967295 (0xffffffff) inclusive.
Serialized as four bytes, most significant first.

• intn: An integer in the range from 0 to 4294967294 (0xfffffffe) inclusive,
or the special value None. An integer value is serialized as four bytes, most
significant first; the value None is serialized as "\xff\xff\xff\xff" .

• bool: A Boolean value. Truth is serialized as "\x00\x00\x00\x01" and
falsehood is serialized as "\x00\x00\x00\x00" .

• enum: A value from a finite set of identifiers. Each of the three uses of enum
(in Step , Segment , and Condition) has a distinct domain. Values of an enum
correspond to small integers and are serialized in the same way as an int.

• str: A string of 8-bit bytes with maximum length 4294967295. Serialized as a
four-byte integer length followed by the bytes of the string.

• pixel: A pixel colour with red, green, and blue components, each ranging
from 0 to 255 inclusive. Serialized as three bytes (red, green, blue).

• sample: An individual audio sample value ranging from -32768 to 32767
inclusive. Serialized as a 16-bit signed integer, most significant byte first.

2.2.2 Compound Types

The top-level compound type for the entire ballot definition is Ballot . A ballot
definition file consists of an 8-byte identifying header, followed by the serialized
content of the Ballot structure, followed by the 20-byte SHA-1 digest of the
serialized content. The header is "Pvote\x00\x01\x00" , where the last two
bytes are the major and minor version number of the format.

Figure 2.1 depicts the exact structure of Ballot , which is shown as the heavy
box at the top. Within this box, the internal structure of all its constituent types is
revealed, except for Binding and Segment , which are described in the boxes below.
The figure shows all the fields in the order they are serialized. Each compound
type is serialized simply by concatenating its serialized fields with no padding.

Many fields contain lists of elements. A list can have from 0 to 4294967295
elements. A list is serialized as a four-byte integer length followed by all the
elements serialized in order. All the list fields (those marked with []) are serialized
in this fashion, except the pixels field of an Image . The pixels field is serialized
with no length, since the length is already determined by the width and height
fields of the Image .

2. Ballot Definition Format 9

Ballot

Model

Group[]
int max_sels
int max_chars
int option_clips

Option[]
int sprite_i
int clip_i
intn writein_group_i

Page[] → 1 layout

Binding[] bindings (see below)

State[] → 1 slot

int sprite_i
Segment[] segments (see below)

Binding[] bindings (see below)

Segment[] timeout_segments
intn timeout_page_i
intn timeout_state_i

OptionArea[] → 1 slot

int group_i
int option_i

CounterArea[] → 1 slot

int group_i
int sprite_i

ReviewArea[] → (1 + max_chars)
× max_sels slots

int group_i
intn cursor_sprite_i

int timeout_ms

Text

TextGroup[]
str name
bool writein
str[] options

Audio
int sample_rate

Clip[]
sample[] samples

Video
int width , height

Layout[]

Image screen

int width , height
pixel[width × height] pixels

Rect[] targets

int left , top , width , height

Rect[] slots

int left , top , width , height

Image[] sprites

int width , height
pixel[width × height] pixels

Binding
intn key
intn target_i
Condition[] conditions

Step
enum op
intn group_i
int option_i

Segment[] segments
intn next_page_i
intn next_state_i

Segment
Condition[] conditions
enum type
intn clip_i
intn group_i
int option_i

Condition
enum predicate
intn group_i
int option_i
bool invert

Figure 2.1: Ballot definition data structures. A double border around a subelement
signifies a list of subelements of that type.

2. Ballot Definition Format 10

2.3 Model

The model contains Group s, which describe the ballot structure, and Pages, which
describe the user interface. The model also has one integer field, timeout_ms ,
which specifies an idle timeout in milliseconds. The ballot definition can specify
an automatic transition or audio message to occur when there has been no user
activity and no audio playing for timeout_ms milliseconds.

Each field whose name ends with _i is an integer index that refers to an element
of a list elsewhere in the structure.

2.3.1 Groups

A Group is a container of selectable options. Groups are used for two purposes: as
contest groups and as write-in groups. A contest group represents an actual contest on
the ballot; its options are options such as candidates. A write-in group represents a
single write-in entry field; its options are the characters of the write-in. In all cases,
the current selection for a group is a list of options (even though a contest selection
has set semantics and a write-in selection has ordered sequence semantics). The
fields in a Group are:

• max_sels : The maximum allowed number of selections in the group.
• max_chars : The maximum allowed number of characters that can be

entered for write-in options in the group. If this is zero, the group has no
write-in options. This must be zero if the group is a write-in group.

• option_clips : The number of audio clips associated with each option.
• options : The list of options in the group.

Each option is associated with exactly two sprites, one to display when the
option is selected, and one to display when it is not selected. Each option can be
associated with any number of audio clips (the same number for all options in a
group, specified by option_clips in the Group). These come from the sprites
and clips lists in the Video and Audio structures, respectively. There are three
fields in an Option :

• sprite_i : An index into video.sprites . The sprite at index sprite_i
is shown for the selected option, and the sprite at index sprite_i + 1 is
shown for the unselected option.

• clip_i : An index into audio.clips . The clips with indices from clip_i
to clip_i + option_clips - 1 are used to represent the option.

• writein_group_i : If the option is a write-in option, this field specifies the
write-in group that will hold the text entered for this write-in. If the option is
a regular option, this field is None.

Note the logical relationships among these fields. If max_chars is zero, then
all the options should have None as their writein_group_i . Only in a contest
group may writein_group_i can take on values other than None; these values
must be the indices of write-in groups. The referenced write-in groups must have
max_chars set to zero and max_sels equal to the contest group’s max_chars .

2. Ballot Definition Format 11

2.3.2 Pages

The Page represents an overall display appearance such as a page of instructions
or a selection page for a particular contest. The fields in a Page are as follows:

• bindings : Bindings that apply in all the states in this page.
• states : States that belong to this page (i. e. have this overall appearance).
• option_areas : Parts of the visual display that show specific options and

indicate whether the options are selected or unselected.
• counter_areas : Parts of the visual display that change based on the

number of options that are selected in a particular group.
• review_areas : Parts of the visual display that list all the selected options

in a particular group.

There is a one-to-one correspondence between pages and layouts: item i in the
Model ’s list of pages corresponds to item i in the Video ’s list of layouts . The
corresponding Layout gives the full-screen image for the page. The slots in the
Layout also correspond to elements of the page: if there are s states, o option areas,
c counter areas, and r review areas, then the states get the first s slots in the list,
the option areas get the next o slots, the counter areas get the next c slots, and the
review areas get the rest.

An OptionArea has two fields:

• group_i : The index of a group in the Model ’s groups .
• option_i : The index of an option in that Group ’s options , which will

appear in the option area’s slot.

A CounterArea has two fields:

• group_i : The index of a group in the Model ’s groups .
• sprite_i : The starting index of a set of sprites occupying indices from

sprite_i to sprite_i + max_sels in video.sprites . The sprite at
index sprite_i + n will appear in the counter area’s slot, where n is the
number of options currently selected in group group_i .

A ReviewArea has two fields:

• group_i : The index of a group in the Model ’s groups . For each of the
selected options in group group_i , there is one slot for the option and
max_chars slots for the characters of text for a write-in option, hence a total
of (1 + max_chars) ×max_sels slots.

• cursor_sprite_i : This field can be None; otherwise it specifies a sprite to
be placed in the first unused option slot when the group is not full.

The actual states of the state machine are represented by the State data
structure. The states are grouped into pages because several states often share
a similar display appearance (e. g. states could highlight different user interface
elements in a fixed layout of elements on the screen) and similar behaviours (e. g.
the “next page” button, a common element of voting user interfaces, takes you
to a new screen regardless of which element has the focus on the current screen).
Organizing states into pages reduces redundancy and simplifies the work of ballot
definition creators and reviewers.

2. Ballot Definition Format 12

A State has these fields:

• sprite_i : A sprite to be pasted into the state’s slot.
• segments : A list of audio segments played upon entry into this state.
• bindings : Bindings that apply to just this state. These can override page-

level bindings; when the user presses a key or touches a target, an operative
binding is sought first in the state’s bindings and then in the page’s bindings.

• timeout_segments : A list of audio segments to be played upon timeout.
• timeout_page_i , timeout_state_i : The state to automatically enter

upon timeout. If timeout_page_i is None, no automatic transition occurs.

User input

The lists of Binding s in pages and states specify behaviour in response to user input.
Each binding specifies a triplet of stimulus, condition, and response.

There are two kinds of stimuli: keypresses, which are received as an integer key
code, and screen touches, which are translated into a target index by looking up the
screen coordinates of the touch point in the layout’s array of targets . A binding
can specify either a key code or a target index or both. A binding is said to match
the stimulus if it specifies the pressed key or touched target.

The condition specifies constraints on the current selection state in order for the
binding to apply. A binding is considered operative if it matches the stimulus and
its condition is satisfied.

The response consists of three parts: selection operations (given as Steps), audio
feedback, and navigation. To invoke a binding is to carry out the response. When
the user provides a stimulus, at most one binding is invoked: the first operative
binding found in the current state or the current page.

The fields in a Binding are:

• key : A key code that this binding will match.
• target_i : A target index that this binding will match.
• conditions : A list of Condition s that must all be satisfied in order for this

binding to be operative.
• steps : A list of Steps to be carried out when this binding is invoked.
• segments : A list of Segment s to be played when the binding is invoked.
• next_page_i , next_state_i : The state to enter when this binding is

invoked. If next_page_i is None, no state transition occurs.

A Condition has four fields:

• predicate : One of the following predicate types.

0. PR_GROUP_EMPTY: Satisfied when a group is empty.
1. PR_GROUP_FULL: Satisfied when a group is full.
2. PR_OPTION_SELECTED: Satisfied when an option is selected.

• group_i , option_i : Identifies the group or option to which the predicate
is applied (see Group and option references below).

• invert : If true, the sense of the condition is inverted.

2. Ballot Definition Format 13

A Step has three fields:

• op : One of the following operation types.

0. OP_ADD: Append the specified option to its group’s selection list if not
already present.

1. OP_REMOVE: Remove the specified option from its group’s selection list
if it is present.

2. OP_APPEND: Append the specified option to its group’s selection list.
3. OP_POP: Remove the last option from the specified group’s selection list.
4. OP_CLEAR: Clear the specified group’s selection list.

• group_i , option_i : Identifies the group or option to which the operation
is applied (see Group and option references below).

Audio feedback

Audio feedback is specified as a list of segments. Some segments simply play a
particular clip; others can play different clips depending on the selection state.
Invoking a binding always interrupts any currently playing feedback and starts
afresh. The segments for the binding, if any, are queued to be played first. The
segments for the newly entered state, if a state transition takes place, are queued to
be played next. The fields in a Segment are:

• conditions : A list of Condition s that must all be satisfied in order for
this segment to be played; otherwise the segment is skipped and playback
continues with the next segment in the list.

• type : One of the following segment types.

0. SG_CLIP: Play the clip at clip_i .
1. SG_OPTION: Play the clip at offset clip_i from the specified option’s

clip_i . If the option has a write-in group, also play the clips for all the
selected options in the write-in group (use each option’s clip_i with
no offset).

2. SG_LIST_SELS: For each selected option in the specified group, play
the clip at offset clip_i from the selected option’s clip_i . If the
option has a write-in group, also play the clips for all the selected options
in the write-in group (use each option’s clip_i with no offset).

3. SG_COUNT_SELS: Play the clip at offset n from the specified clip_i ,
where n is the number of selected options in the specified group.

4. SG_MAX_SELS: Play the clip at offset n from the specified clip_i ,
where n is max_sels for the specified group.

• clip_i : A clip index or offset applied to a clip index, depending on type .
• group_i , option_i : Identifies the group (for SG_COUNT_SELSor

SG_MAX_SELS) or option (for SG_OPTIONor SG_LIST_SELS) for which
a clip is played (see Group and option references below).

2. Ballot Definition Format 14

Group and option references

In a Condition , Step , or Segment , the pair of fields group_i and option_i is used
to refer to a group or option. If group_i is None, then option_i is the index of an
OptionArea on the current page; the pair (group_i , option_i) indirectly refers to
the group or option of this OptionArea . Otherwise, the pair (group_i , option_i)
directly refers to group group_i in the Model ’s list of groups or option option_i
in that Group ’s list of options .

2.4 Text

The text data provides textual labels for groups and options so that the user’s
selections can be printed out. The Text structure has just one field, groups , which
is a list of of TextGroup s. Each TextGroup has three fields:

• name: The name of the group.
• writein : If true, the group is to be printed as a write-in group. Otherwise,

the group is to be printed as a contest group.
• options : A list of the names of the options in the group.

2.5 Audio

The Audio structure contains two fields:

• sample_rate : The playback rate in samples per second.
• clips : A list of audio clips, referenced by index in Option and Segment

structures.

Each clip is a Clip structure, which contains just one field:

• samples : A list of signed 16-bit samples. Audio clips have one channel.

2.6 Video

The Video structure has the following fields:

• width , height : The display screen resolution.
• layouts : A list of Layout s, one for each Page in the Model .
• sprites : A list of Images for pasting onto the display, referenced by index

in Option , State , and ReviewArea structures.

The fields in a Layout are as follows:

• screen : The full-screen page image (over which sprites will be pasted).
• targets : A list of rectangular screen regions where touches will be detected

and acted upon.
• slots : A list of rectangular screen regions where sprites will be pasted.

Images are specified as an integer width and integer height followed by pixel
data (3 bytes per pixel). The rectangular regions for targets and slots are specified
as four integers, left , top , width , and height .

2. Ballot Definition Format 15

2.7 Validity constraints

The following specification of the data structures is annotated on the right with the
constraints that have to be met in order for the ballot definition file to be valid. For
brevity, the constraints are written with some unqualified names:

• groups and pages refer to fields of the Model object
• clips refers to the field of the Audio object
• sprites refers to the field of the Video object

Also, length(x) refers to the length of a list x, and the symbol $ means “sizes match”
(that is, a $ b ⇔ a.width = b.width and a.height = b.height).

1 Ballot:
2 Model model
3 Text text
4 Audio audio
5 Video video

6 Model:
7 Group[] groups length(groups) = length(text.groups) > 0

8 Page[] pages length(pages) = length(layouts) > 0

9 int timeout_ms

10 Group:
11 int max_sels
12 int max_chars
13 int option_clips
14 Option[] options

15 Option:
16 int sprite_i sprite_i + 1 < length(sprites)

sprites[sprite_i] $ sprites[sprite_i + 1] $ group ’s option size

17 int clip_i clip_i + group.option_clips − 1 < length(clips)
18 intn writein_group_i writein_group_i 6= None ⇒ writein_group_i < length(groups)

and groups[writein_group_i].max_chars = 0
and groups[writein_group_i].max_sels = group.max_chars > 0
and ∀ option ∈ groups[writein_group_i].options :

sprites[option.sprite_i] $ group ’s character size19 Page:
20 Binding[] bindings
21 State[] states length(states) > 0

22 OptionArea[] option_areas
23 CounterArea[] counter_areas
24 ReviewArea[] review_areas

25 State:
26 int sprite_i sprite_i < length(sprites)

sprites[sprite_i] $ slots[state_i]

27 Segment[] segments ∀ segment ∈ segments :
segment.type = 0 or segment.use_step = false28 Binding[] bindings

29 Segment[] timeout_segments ∀ segment ∈ timeout_segments :
segment.type = 0 or segment.use_step = false

30 intn timeout_page_i timeout_page_i 6= None ⇒ timeout_page_i < length(pages)
31 intn timeout_state_i timeout_page_i 6= None ⇒ timeout_state_i < length(page[timeout_page_i].states)

2. Ballot Definition Format 16

32 OptionArea:
33 int group_i group_i < length(groups)
34 int option_i option_i < length(groups[group_i].options)

option area’s slot $ groups[group_i] ’s option size
35 CounterArea:
36 int group_i group_i < length(groups)
37 int sprite_i sprite_i + groups[group_i].max_sels < length(sprites)

∀ i ∈ {0, 1, 2, . . . , groups[group_i].max_sels }:
counter area’s slot $ sprites[sprite_i + i]

38 ReviewArea:
39 int group_i group_i < length(groups)
40 intn cursor_sprite_i cursor_sprite_i 6= None ⇒ cursor_sprite_i < length(sprites)

and sprites[cursor_sprite_i] $ groups[group_i] ’s option size

review area’s option slot $ groups[group_i] ’s option size
∀ slot ∈ review area’s character slots:

slot $ groups[group_i] ’s character size41 Binding:
42 intn key
43 intn target_i
44 Condition[] conditions
45 Step[] steps length(steps) = 0 ⇒ ∀ segment ∈ segments :

segment.type = 0 or segment.use_step = false46 Segment[] segments
47 intn next_page_i next_page_i 6= None ⇒ next_page_i < length(pages)
48 intn next_state_i next_page_i 6= None ⇒ next_state_i < length(page[next_page_i].states)

49 Condition:
50 enum predicate predicate ∈ {0, 1, 2}
51 intn group_i group_i 6= None ⇒ group_i < length(groups)
52 int option_i group_i = None ⇒ option_i < length(page.option_areas)

group_i 6= None ⇒ option_i < length(groups[group_i.options)53 bool invert

54 Step:
55 enum op op ∈ {0, 1, 2, 3, 4}
56 intn group_i group_i 6= None ⇒ group_i < length(groups)
57 int option_i group_i = None ⇒ option_i < length(page.option_areas)

group_i 6= None ⇒ option_i < length(groups[group_i.options)
58 Segment:
59 Condition[] conditions
60 enum type type ∈ {0, 1, 2, 3, 4}
61 int clip_i type = 0 ⇒ clip_i < length(clips)

type ∈ {1, 2} ⇒ clip_i < groups[g].option_clips

type ∈ {3, 4} ⇒ clip_i + groups[g].max_sels < length(clips)
where g = group_i if group_i 6= None

g = option_areas[option_i].group_i otherwise

62 intn group_i group_i 6= None ⇒ group_i < length(groups)
63 int option_i type 6= 0 and group_i = None ⇒ option_i < length(page.option_areas)

type 6= 0 and group_i 6= None ⇒ option_i < length(groups[group_i].options)

2. Ballot Definition Format 17

64 Text:
65 TextGroup[] groups ∀ i ∈ {0, 1, 2, . . . , length(groups) - 1}:

length(groups[i].options) = length(model.groups[i].options)

66 TextGroup:
67 str name name contains only printable characters
68 bool writein
69 str[] options ∀ option ∈ options :

option contains only printable characters

70 Audio:
71 int sample_rate
72 Clip[] clips

73 Clip:
74 sample[] samples length(samples) > 0

75 Video:
76 int width width > 0

77 int height height > 0

78 Layout[] layouts
79 Image[] sprites

80 Layout:
81 Image screen screen $ video

82 Rect[] targets
83 Rect[] slots

84 Image:
85 int width width > 0

86 int height height > 0

87 pixel[width*height] pixels

88 Rect:
89 int left
90 int top
91 int width left + width ≤ video.width

92 int height top + height ≤ video.height

Some of the above constraints refer to the option area’s slot, counter area’s slot,
and review area’s slots, which are slots taken from the slots array of the page’s
corresponding Layout object, as described in Section 2.3.2.

The size constraints on sprites and slots also refer to the option size and character
size of a group, even though the Group structure doesn’t have fields for specifying
option size and character size. This just means that all the objects that are required
to match a particular group’s option size must all have the same size, and all the
objects that are required to match a particular group’s character size must all have
the same size.

The constraints requiring each Clip to have a nonzero length and each Image
to have nonzero width and height are not strictly necessary for Pvote to function.
They are present due to a Pygame limitation: Pygame refuses to create zero-length
sounds or zero-sized images.

3. Pthin 18

Chapter 3

Pthin

Though the implementation of Pvote is developed, tested, and demonstrated on
the open-source Python interpreter (versions 2.3, 2.4, and 2.5), it only uses a small
subset of the Python language. To limit the scope of the review and to save the
reviewers from having to read the entire Python reference manual, this section
defines “Pthin”, a subset of Python sufficient to run Pvote. Differences between
the Pthin specification and the behaviour of the Python interpreter are out of scope
for this review.

3.1 Types

Values in Pthin are typed, but variables are not. There is a unique special value
called None whose only supported operation is comparison to None. Aside from
None, there are six types of values in Pthin: integers, strings, lists, functions,
classes, and objects.

Integers have unlimited size. Integer literals are written in decimal.
Strings are variable-length arrays of 8-bit bytes. String literals are written

exactly as in C.
Lists are variable-length arrays of Pthin values. Lists can be heterogeneous

and can contain values of any type as elements. List literals are written in square
brackets with elements separated by commas.

Functions may take any number of arguments and always return one value.
Functions are defined with the def keyword (see Section 3.4 for more on functions).

Classes contain method definitions and can be invoked to instantiate objects.
Classes are defined with the class keyword (see Section 3.5 for more on classes).

Objects are instances of classes. Each object contains its own public namespace,
accessed with a dot. For example, if x is an object, then x.foo = 3 binds foo
to 3 in the namespace belonging to x . An object’s methods are simply functions
residing in its namespace (see Section 3.5 for more on methods).

Table 1 is a summary of expressions involving these types. When the arguments
to an operation are of unacceptable types, a runtime error occurs.

Assignment binds a name to a reference, lists and object namespaces contain
references, and arguments are passed by reference. (This works like Scheme or
Java with objects only: all values are boxed, even integers.)

3. Pthin 19

Expression Preconditions Definition
(expr) evaluate expr
None literal for the special value None
123 integer literal
"abc" string literal
[expr1, expr2, ...] list literal
[expr for name in l] evaluate expr with name bound to each element of l
o. field field is bound in o’s namespace access a field in the object o’s namespace
f(arg1, ...) arguments match f ’s arity call a function
c(arg1, ...) arguments match c ’s arity create an object that is an instance of c
s[i:j] 0 ≤ i ≤ j < length of s get a substring (skip first i bytes, get next j - i bytes)
l[i] 0 ≤ i < length of l get the element of l at index i (counting starts at zero)
i * j multiply
i / j j 6= 0 divide and round down
i % j j 6= 0 i - j*(i/j)
s * i i ≥ 0 concatenate i copies of s to make a new string
i + j add
i - j subtract
l + m concatenate two lists to make a new list
s + t concatenate two strings to make a new string
Comparison operators can be chained (e. g. 10 <= x < 20). The result is the conjunction of all the comparisons.
i == j 1 if i = j ; 0 otherwise
i != j 1 if i 6= j ; 0 otherwise
i == None 1 if i is None; 0 otherwise
i != None 1 if i is not None; 0 otherwise
i < j 1 if i < j ; 0 otherwise
i > j 1 if i > j ; 0 otherwise
i <= j 1 if i ≤ j ; 0 otherwise
i >= j 1 if i ≥ j ; 0 otherwise
s == t 1 if s and t are identical strings; 0 otherwise
s != t 1 if s and t are different strings; 0 otherwise
i in l 1 if i is an element of l ; 0 otherwise
i not in l 1 if i is not an element of l ; 0 otherwise
not i 1 if i is zero; 0 otherwise
i and j 1 if i and j are both nonzero; 0 otherwise
i or j 1 if i or j or both are nonzero; 0 otherwise

Table 3.1: Expression syntax, with operators grouped by precedence (highest at
the top). For the expressions listed in this table, i and j are integers, s and t are
strings, l and mare lists, f is a function, c is a class, o is an object, and x is a value of
any type. If any operand has an unacceptable type or the precondition is violated,
a runtime error occurs.

3. Pthin 20

3.2 Namespaces

Bindings are created by assignment statements, the for statement, function
definitions, and class definitions. Bindings can exist in three types of namespaces:
global namespaces, local namespaces, and object namespaces.

Each Pthin file has one global namespace. Whenever a function is invoked, a
new local namespace is created for the execution frame, and it lasts until the frame
is exited.

Pthin has lexical scoping with just two levels. When names are bound outside
of a function, the binding is created in the global namespace. When names are
bound inside of a function, the binding is created in the local namespace.

Within a function, names can refer to bindings in the global or local namespace.
A name refers to a local binding if a binding to that name exists anywhere within
the function definition. Otherwise, the name refers to a global binding.

Every object has its own public object namespace. Object namespaces are
always accessed explicitly using the dot operator on the object.

3.3 Statements

Many kinds of statements contain blocks of code, which are delimited by indenta-
tion. A block is introduced with a colon at the end of a line. The body of the block is
indented with respect to its introducing line, and ends when the indentation level
returns to match the indentation of the introducing line.

The assert statement evaluates an integer-valued expression and causes a
runtime error if the value is zero.

The print statement sends a string to the printer.
An if statement takes the form if condition: followed by an indented block.

The condition must evaluate to an integer. The block is executed if the condition is
nonzero. This can be optionally followed by else: (indented to match its if) and
another indented block to be executed if the condition is zero.

A while loop takes the form while condition: followed by an indented block.
The condition must evaluate to an integer. Just as in C, the block is repeatedly
evaluated as long as the condition is nonzero.

A for loop takes the form for name in expr: followed by an indented block.
The expression expr must evaluate to a list. The for loop binds name to each
element of the list in turn, executing the body once for each element.

The import statement imports Pthin modules and makes them available in the
current namespace. A Pthin module is just a text file containing Pthin code, with
a filename ending in .py . The statement import name creates a new object to
represent the module and executes name.py using that object’s namespace as the
global namespace. That is, all the global bindings in the file appear as bindings in
the module object’s namespace. The module object is then bound to name. If the
module has already been imported, it is not executed again; name is bound to the
already existing module object.

See Table 3.2 for a summary of these statement types.

3. Pthin 21

Statement Preconditions Definition
name = x create or replace a binding in the current namespace
o. field = x create or replace a binding in the object o’s namespace
l[i] = x 0 ≤ i < length of l set the element of l at index i to x
[lvalue1, ..., lvaluen] = l n = length of l assign to multiple lvalues (names, fields, or list items)
assert i cause a runtime error if i is zero
print s send s and a newline to the printer
if i: if i is nonzero, execute the first block

block
else: otherwise execute the second block

block
while i: execute block repeatedly as long as i is nonzero

block
for lvalue in l: for each element of l , assign it to lvalue and execute block

block
import name1, name2, ... import the modules name1, name2, ... from the files

name1.py , name2.py , ... respectively
def name(param1, param2, ...): create a function with parameters param1, param2, ...

block
return expr exit a function, returning expr as the result
class name: create a class with the given methods

def method(param1, param2, ...):
block

...

Table 3.2: Statements in Pthin. In these descriptions, i is an integer, s is a string, l
is a list, o is an object, and x is a value of any type.

3.4 Functions

A function is defined with the def keyword followed by the name of the function,
a pair of parentheses surrounding a comma-separated list of parameter names,
and a colon. The body of the function is an indented block. Executing a function
definition binds the name to the newly created function. Here’s an example:

def factorial(n):
if n == 0 or n == 1:

return 1
return n * factorial(n - 1)

Calling a function creates a new local namespace in which the parameter names
are bound to the arguments passed in. If the number of arguments does not match
the number of parameters, a runtime error occurs.

Within the body of a function, return expr exits the function with a return
value. If no return statement is executed, the function returns None.

3. Pthin 22

3.5 Classes and objects

A class is defined with the class keyword followed by the name of the class and
a colon, then an indented block containing a series of method definitions. Each
method definition is a function definition with at least one parameter. Since the
object itself is always passed into a method as the first argument, the first parameter
is conventionally named self .

Invoking a class creates a new object belonging to the class. The new object’s
namespace acquires a binding for each method in the class. Each method definition
with n parameters in the class yields a function of the same name with n − 1
parameters in the object’s namespace. Invoking this function with some arguments
is equivalent to invoking the corresponding method with one extra argument, the
object itself, prepended to the given argument list.

Immediately after the object is created, the function named __init__ in its
namespace is invoked with the arguments passed into the invocation of the class.

Here’s an example of a simple class definition:

class Counter:
def __init__(self, n):

self.count = count
def next(self):

self.count = self.count + 1
return self.count

c = Counter(5) would create a new Counter object with c.count initially
bound to 5. Invoking c.next() would increment c.count to 6 and return 6.

3.6 Built-in functions and methods

The functions in Table 3.3 are available from any scope.

Expression Result Preconditions Definition
range(i) list i ≥ 0 make a list of the i integers from 0 to i - 1
chr(i) string 0 ≤ i ≤ 255 convert i to a one-byte string
ord(s) integer len(s) = 1 convert the first byte of s to an integer
len(s) integer get the number of bytes in s
list(s) list break s into a list of one-byte strings
len(l) integer get the number of elements in l
enumerate(l) list make a list of pairs [i, x] for each element x and its index i
l.append(x) None append x as one more element at the end of l
l.remove(i) None i is an element of l find and remove the first element that equals i from l
l.pop() any l is not empty remove and return the last element from l
open(s) object a file named s exists open a file for reading, yielding a readable stream object

Table 3.3: Built-in functions and methods in Pthin. In these descriptions, i is an
integer, s is a string, l is a list, and x is a value of any type.

3. Pthin 23

3.7 Readable stream objects

The term “readable stream object” refers to any object with a read method that
takes a single integer argument, length , and returns a string of up to length
bytes. The underlying concept is that the object maintains a current position in a
finitely long data stream, and that each invocation of read returns the next length
bytes from the data stream and advances the current position by length bytes in
preparation for the next read . If there are fewer than length bytes remaining to
be read, the result is a string containing whatever is left in the data stream; if the
end of the stream has been reached, the result is an empty string.

Opening a file with the built-in open function returns an object that provides
this protocol. Custom objects that provide this protocol can also be instantiated
from class definitions that implement an appropriate read method.

4. Pygame 24

Chapter 4

Pygame

Pvote uses the Pygame library for graphics, sound, and user input. This section
specifies the parts of Pygame that Pvote uses and their expected behaviour.

4.1 Events

A Pygame program is built around a main event loop that processes incoming
events one at a time. When events occur, Pygame adds them to an internal queue.
Each call to pygame.event.wait() waits until the queue is nonempty, then
removes and returns the first event from the queue. The returned event object
always has an integer field type specifying the kind of event, and may have other
fields for details of the event, depending on the type. The event-related functions
and event types used in Pvote are shown in Table 4.1.

Function Preconditions Definition
pygame.event.wait()

Wait for the next event and return an event
object describing it.

pygame.time.set_timer(event, delay)
event is an integer event type code greater
than or equal to USEREVENT. delay is an
integer number of milliseconds.

Schedule an event of type event to occur after
delay milliseconds (replacing any currently
scheduled timer for an event of that type).

Event type value Definition
pygame.KEYDOWN(2) A keyboard key has been pressed. The

integer key code is given in the key field of
the event object.

pygame.MOUSEBUTTONDOWN(5) A mouse button has been pressed. The
coordinates of the mouse pointer are given
in the pos field of the event object, which is
a list of two integers.

pygame.USEREVENT(24) Events with type equal to USEREVENTand
above have user-defined meaning.

Table 4.1: Pygame event operations used by Pvote.

4. Pygame 25

4.2 Audio

Pygame provides a mixer facility for playing audio. The mixer can play many
sounds at once, though Pvote is not designed to use this capability. Sound clips are
represented by Sound objects that can be told to play() themselves. Each time
a Sound starts playing, it is assigned to an available Channel ; the mixer mixes all
the channels together (by default, there are 8 channels). A channel can be asked to
trigger a notification event when its current sound clip finishes playing.

Table 4.2 summarizes the Pygame functions and methods that Pvote uses to
implement audio playback.

Function Preconditions Definition
pygame.mixer.init(rate, format, stereo)

rate is a valid sample rate (11025, 22050, or
44100). format is 8 for unsigned 8-bit samples
or -16 for signed 16-bit samples. stereo is 0 for
mono or 1 for stereo.

Initialize the audio player with the given
sample rate (in samples per second), sample
format, and mono/stereo setting. Must be
called before any other audio operations.

pygame.mixer.stop()
Stop any currently playing sounds on all
channels.

pygame.mixer.Sound(stream)
stream is a readable stream object (see
Section 3.7). When read, stream yields the
contents of a valid WAV file (see Section C).

Create a Sound object for the given sound
clip.

Class Method
Preconditions Definition

Sound play()
Start playing this sound clip and return the
Channel on which the clip is playing.

Channel set_endevent(event)
event is an integer event type code greater
than or equal to USEREVENT.

Schedule an event of type event to occur
when the currently playing sound clip stops
playing, either because the end of the
clip has been reached or playing has been
stopped.

Table 4.2: Pygame audio operations used by Pvote.

4. Pygame 26

4.3 Video

All drawing takes place on frame buffers represented by Surface objects. Initializ-
ing the video system yields a Surface for the display. After drawing on the surface,
one must call the display’s update method to copy the changed contents of the
frame buffer to the visible display.

Pvote constructs its visual display entirely by pasting prerendered images onto
the screen. It needs to use only one drawing method, blit , for this purpose.

Table 4.3 summarizes the functions and methods that Pvote uses for visual
display.

Function Preconditions Definition
pygame.display.set_mode(size, flags)

size is a pair of integers [width, height] .
flags is an integer.

Initialize the video display with a resolution
of width × height pixels and return a Surface
object. If flags is pygame.FULLSCREEN, the
display fills the screen.

pygame.display.update()
Update the video display to reflect the
contents of its surface object. (Drawing
commands will alter the surface in memory,
but the contents are not placed on the
display until update is called.)

pygame.image.fromstring(data, size, "RGB")
size is a pair of integers [width, height] .
data is a string of width × height × 3 bytes.

Create an Image object from the pixel data
in data, which is ordered left to right, top to
bottom, and has 3 unsigned bytes per pixel
(red, green, and blue values respectively).

Class Method
Preconditions Definition

Surface blit(image, pos)
image is an Image object with size (width,
height). pos is a list of two integers [x, y] .
0 ≤ x < x + width < width of surface.
0 ≤ y < y + height < height of surface.

Paste an image onto this surface with its
top-left corner at the given (x, y) position.

Table 4.3: Pygame video operations used by Pvote.

5. SHA 27

Chapter 5

SHA

Pvote uses the Python SHA module to compute SHA-1 digests. After the module
has been imported with the statement import sha , calling sha.sha() creates
a new SHA hashing object. The SHA object supports progressively adding more
input data with the update method; at any point the digest method can be called
to obtain the digest of the data submitted to far.

Function Preconditions Definition
sha.sha() Create a new SHA object.

Class Method
Preconditions Definition

sha o.update(s)
s is a string. Append s to the data being hashed.

sha o.digest()
Return a 20-byte string with the SHA-1
digest of all the data sent to this object so far.

Table 5.1: SHA module operations used by Pvote.

6. Pvote 28

Chapter 6

Pvote

6.1 Design

Pvote consists of seven components:

• Main program and event loop (pvote): Responsible for loading the other
components and receiving and dispatching Pygame events.

• Ballot loader (Ballot.py): Responsible for deserializing the ballot
definition file and verifying its header and digest.

• Ballot verifier (verifier.py): Responsible for checking the validity of the
ballot definition according to the constraints described in Section 2.7.

• Navigator (Navigator.py): Responsible for keeping track of the user’s se-
lections and the current state of the user interface, and performing selection,
navigation, or audio feedback in response to user actions.

• Audio driver (Audio.py): Responsible for queueing and playing audio.
• Video driver (Video.py): Responsible for drawing the visual display.
• Printer driver (Printer.py): Responsible for printing the committed ballot.

When Pvote starts up, the ballot loader is invoked to deserialize the ballot
definition into memory, and then the verifier is invoked to check that the ballot
is well-formed. The purpose of the verifier is to ensure that a badly formed ballot
will cause an immediate failure, so that a runtime error cannot occur after the user
interface has started operating.

The remaining five components form the virtual machine (Figure 6.1) that
presents the voting user interface to the voter. Each component has limited
responsibilities, and there are limited data flows between components.

The navigator keeps track of the current page and state and the current
selections in each group. The navigator responds to three messages:

• touch (target_i) : Find the first operative binding for the current state or
page that matches the given target, and invoke it.

• press (key) : Find the first operative binding for the current state or page
that matches the given keypress, and invoke it.

• timeout () : Start playing the timeout_segments for the current state. Go
to the page and state given by timeout_page_i and timeout_state_i if
timeout_page_i is not None.

6. Pvote 29

LEGEND

start playing

audio finished

audio data video data ballot model

navigatorvideo driver

event loop

display

touch sensor
x, y

printer

write(selections)

software
module

hardware
device

one-way data flow

print driver

touch(target_i)
press(key_i)

timeout()

headphones

keypad
key_i

audio driver

play(clip_i)
stop()

lo
ca

te
(x

, y
) target_i

goto(layout_i)
paste(sprite_i, slot_i)

text data

ne
xt

()
ballot definition

causal link

Figure 6.1: Block diagram of the virtual machine, which consists of the five software
modules in bold. The arguments clip i, layout i, sprite i, target i, key i, x, and y are
integers; selections is an array of lists of integers.

The navigator sends five messages to other modules:

• goto (layout_i) is sent to the video driver upon transition to a page. The
layout index is the same as the page index.

• paste (sprite_i, slot_i) is sent to the video driver to paste sprites into
slots as necessary for states, option areas, counter areas, and review areas.

• play (clip_i) is sent to the audio driver to queue a clip to be played on the
headphones.

• stop () is sent to the audio driver to stop the currently playing clip.
• write (selections) is sent to the printer to commit the user’s selections

by printing the ballot.

The audio driver maintains a queue of audio clips to be played. It responds to
two messages:

• play (clip_i) : If nothing is currently playing, immediately begin playing
the specified clip; otherwise queue the specified clip to be played. clip_i is
an index into the array of clips in the Audio part of the ballot definition.

• next () : If there are any clips waiting in the queue, start playing the next
one.

• stop () : Stop whatever is currently playing and clear the queue.

The audio driver also exposes a field named playing that the main loop can read
to determine whether a sound clip is currently being played. Whenever the audio
driver starts playing a clip, it also schedules a notification event with the type
constant AUDIO_DONEto occur when the clip finishes playing.

6. Pvote 30

The video driver maintains one piece of state, the index of the current layout.
It responds to three messages:

• goto (layout_i) : Copy the full-screen image for the given layout into the
video display’s frame buffer and set the current layout to layout_i .

• paste (sprite_i, slot_i) : Copy the given sprite into the frame buffer
at the position specified by slot slot_i in the current layout’s slot array.

• locate (x, y) : Find and return the index of the first target that contains
the given point in the current layout’s array of targets, or a failure code if the
point does not fall within any target.

The print driver maintains no state and responds to only one message:

• write (selections) : Print out the voter’s selections. selections is a
list of lists (one for each group). The sublists contain the integer indices of
selected options within each group.

The event loop receives four kinds of Pygame events:

• Keypresses (KEYDOWN): Upon receiving a keypress event, the event loop
notifies the navigator with a press message.

• Mouse clicks (MOUSEBUTTONDOWN): Upon receiving a touch event, the event
loop invokes locate on the video driver to translate the touch coordinates
into a target index, then passes this target index to the navigator in a touch
message.

• Audio notifications (AUDIO_DONE): Upon receiving notification that a sound
clip has finished playing, the event loop invokes next on the audio driver.

• Timer notifications (TIMER_DONE): Upon receiving notification that the timer
has expired, if no sound clip is currently playing, the event loop sends
timeout to the navigator to indicate that the ballot’s specified timeout has
passed with no activity.

The event loop also reschedules a TIMER_DONEevent for timeout_ms
milliseconds in future every time it receives any event.

The audio driver, video driver, and printer driver are completely passive
components: they initiate no messages of their own, only responding to messages
they receive.

6.2 Source Code

The following sections display a complete listing of the source code to Pvote,
with three columns of annotations on the left. The ASSUMPTIONS column contains
assumptions and preconditions for each line, function, or method. The REASONS

FOR VALIDITY column gives an explanation of why each line will not cause a runtime
error, or highlights potential causes of runtime error with the symbol N! . The
POSTCONDITIONS column outlines what is expected to be true after the line has been
executed, or what is returned from a function or method.

Assumptions and postconditions of other lines are cited as evidence: small
numbers in parentheses (123) refer to line numbers in the current file, and lines in
other files are cited with the filename and a colon, as in (Navigator:123).

ASSUMPTIONS REASONS FOR VALIDITY POSTCONDITIONS
1

2 pygame.USEREVENTis an int. AUDIO_DONEis an int.
3 pygame.USEREVENTis an int. TIMER_DONEis an int.

4 A file named ballot exists. open() returns a readable stream object. ballot is a Ballot object.
5 ballot is a Ballot object (4). ballot is valid (verifier:1).
6 ballot.audio is a Ballot.Audio object (4, Ballot:8). audio is an Audio.Audio .
7 ballot.video is a Ballot.Video object (4, Ballot:9). video is a Video.Video .
8 ballot.text is a Ballot.Text object (4, Ballot:7). printer is a Printer .
9 ballot.model is a Ballot.Model (4, Ballot:6). audio is an Audio.Audio (6).

video is a Video.Video (7). printer is a Printer (8).
navigator is a Navigator .

10

11

12 event is a pygame.Event .
13 pygame.KEYDOWNis an int. event is an Event (12) ⇒ event.type exists and is an int.
14 navigator is a Navigator (9). event is a keypress (13) ⇒ event.key

exists and is an int.

15 pygame.MOUSEBUTTONDOWNis an int. event is an Event (12) ⇒ event.type exists and is an int.
16 event is a mouse click (15) ⇒ event.pos exists and is a list of two ints. x and y are ints.
17 video is a Video.Video (7). x and y are ints (16). target_i is an int or None (Video:18).
18

19 navigator is a Navigator (9). target_i is an int (17, 18).
20 AUDIO_DONEis an int (2). event is an Event (12)⇒ event.type is an int.
21 audio is an Audio.Audio (6).
22 TIMER_DONEis an int (3). event is an Event (12)⇒ event.type is an int.
23 navigator is a Navigator (9).
24 TIMER_DONEis an int (3). ballot is a Ballot (4) ⇒

ballot.model.timeout_ms is an int (Ballot:6, Ballot:19).

6. Pvote 31

6.2.1 pvote

1 import Ballot, verifier, Audio, Video, Printer, Navigator, pygame

2 AUDIO_DONE = pygame.USEREVENT
3 TIMER_DONE = pygame.USEREVENT + 1

4 ballot = Ballot.Ballot(open("ballot"))
5 verifier.verify(ballot)
6 audio = Audio.Audio(ballot.audio)
7 video = Video.Video(ballot.video)
8 printer = Printer.Printer(ballot.text)
9 navigator = Navigator.Navigator(ballot.model, audio, video, printer)

10 while 1:
11 pygame.display.update()
12 event = pygame.event.wait()
13 if event.type == pygame.KEYDOWN:
14 navigator.press(event.key)

15 if event.type == pygame.MOUSEBUTTONDOWN:
16 [x, y] = event.pos
17 target_i = video.locate(x, y)
18 if target_i != None:
19 navigator.touch(target_i)
20 if event.type == AUDIO_DONE:
21 audio.next()
22 if event.type == TIMER_DONE and not audio.playing:
23 navigator.timeout()
24 pygame.time.set_timer(TIMER_DONE, ballot.model.timeout_ms)

ASSUMPTIONS REASONS FOR VALIDITY POSTCONDITIONS
1 sha is bound to the SHA module.

2

3 stream is a readable stream.
4 stream is a stream (3). N! if file header not present.
5 sha is the SHA module (1) ⇒ sha.sha is a function. self.stream is a readable stream (3). self.sha is a sha object.
6 self is a readable stream (11). self.model is a Ballot.Model .
7 self is a readable stream (11). self.text is a Ballot.Text .
8 self is a readable stream (11). self.audio is a Ballot.Audio .
9 self is a readable stream (11). self.video is a Ballot.Video .

10 self.sha is a sha (5). N! if hash does not match. The loaded ballot definition data matches its concluding hash.

11 length is an int. Returns a string (12, 14).
12 self.stream is a stream (5). length is an int (11). self.stream is a stream (5) ⇒ data is a str.
13 self.sha is a sha (5). data is a str (12).
14

15

16 stream is a readable stream.
17 stream is a stream (16). Group is a class (20). self.groups is a list of Group (123).
18 stream is a stream (16). Page is a class (31). self.pages is a list of Page (123).
19 stream is a stream (16). allow_none = 0 ⇒ self.timeout_ms is an int (125).

20

21 stream is a readable stream.
22 stream is a stream (21). allow_none = 0 ⇒ self.max_sels is an int (125).
23 stream is a stream (21). allow_none = 0 ⇒ self.max_chars is an int (125).
24 stream is a stream (21). allow_none = 0 ⇒ self.option_clips is an int (125).
25 stream is a stream (21). Option is a class (31). self.options is a list of Option (123).

26

27 stream is a readable stream.
28 stream is a stream (27). self.sprite_i is an int (125).
29 stream is a stream (27). self.clip_i is an int (125).
30 stream is a stream (27). allow_none = 1 ⇒ self.writein_group_i is int or None (125).

31

32 stream is a readable stream.
33 stream is a stream (32). Binding is a class (58). self.bindings is a list of Binding (123).
34 stream is a stream (32). State is a class (38). self.states is a list of State (123).
35 stream is a stream (32). OptionArea is a class (46). self.option_areas is a list of OptionArea (123).
36 stream is a stream (32). CounterArea is a class (50). self.counter_areas is a list of CounterArea (123).
37 stream is a stream (32). ReviewArea is a class (54). self.review_areas is a list of ReviewArea (123).

38

39 stream is a readable stream.
40 stream is a stream (39). allow_none = 0 ⇒ self.sprite_i is an int (125).
41 stream is a stream (39). Segment is a class (78). self.segments is a list of Segment (123).
42 stream is a stream (39). Binding is a class (58). self.bindings is a list of Binding (123).
43 stream is a stream (39). Segment is a class (78). self.timeout_segments is a list of Segment (123).
44 stream is a stream (39). allow_none = 1 ⇒ self.timeout_page_i is int or None (125).
45 stream is a stream (39). allow_none = 1 ⇒ self.timeout_state_i is int or None (125).

6. Pvote 32

6.2.2 Ballot.py

1 import sha

2 class Ballot:
3 def __init__(self, stream):
4 assert stream.read(8) == "Pvote\x00\x01\x00"
5 [self.stream, self.sha] = [stream, sha.sha()]
6 self.model = Model(self)
7 self.text = Text(self)
8 self.audio = Audio(self)
9 self.video = Video(self)

10 assert self.sha.digest() == stream.read(20)

11 def read(self, length):
12 data = self.stream.read(length)
13 self.sha.update(data)
14 return data

15 class Model:
16 def __init__(self, stream):
17 self.groups = get_list(stream, Group)
18 self.pages = get_list(stream, Page)
19 self.timeout_ms = get_int(stream, 0)

20 class Group:
21 def __init__(self, stream):
22 self.max_sels = get_int(stream, 0)
23 self.max_chars = get_int(stream, 0)
24 self.option_clips = get_int(stream, 0)
25 self.options = get_list(stream, Option)

26 class Option:
27 def __init__(self, stream):
28 self.sprite_i = get_int(stream, 0)
29 self.clip_i = get_int(stream, 0)
30 self.writein_group_i = get_int(stream, 1)

31 class Page:
32 def __init__(self, stream):
33 self.bindings = get_list(stream, Binding)
34 self.states = get_list(stream, State)
35 self.option_areas = get_list(stream, OptionArea)
36 self.counter_areas = get_list(stream, CounterArea)
37 self.review_areas = get_list(stream, ReviewArea)

38 class State:
39 def __init__(self, stream):
40 self.sprite_i = get_int(stream, 0)
41 self.segments = get_list(stream, Segment)
42 self.bindings = get_list(stream, Binding)
43 self.timeout_segments = get_list(stream, Segment)
44 self.timeout_page_i = get_int(stream, 1)
45 self.timeout_state_i = get_int(stream, 1)

ASSUMPTIONS REASONS FOR VALIDITY POSTCONDITIONS
46

47 stream is a readable stream.
48 stream is a stream (47). allow_none = 0 ⇒ self.group_i is an int (125).
49 stream is a stream (47). allow_none = 0 ⇒ self.option_i is an int (125).

50

51 stream is a readable stream.
52 stream is a stream (51). allow_none = 0 ⇒ self.group_i is an int (125).
53 stream is a stream (51). allow_none = 0 ⇒ self.sprite_i is an int (125).

54

55 stream is a readable stream.
56 stream is a stream (55). allow_none = 0 ⇒ self.group_i is an int (125).
57 stream is a stream (55). allow_none = 1 ⇒ self.cursor_sprite_i is int or None (125).

58

59 stream is a readable stream.
60 stream is a stream (59). allow_none = 1 ⇒ self.key is int or None (125).
61 stream is a stream (59). allow_none = 1 ⇒ self.target_i is int or None (125).
62 stream is a stream (59). Condition is a class (67). self.conditions is a list of Condition (123).
63 stream is a stream (59). Step is a class (74). self.steps is a list of Step (123).
64 stream is a stream (59). Segment is a class (78). self.segments is a list of Segment (123).
65 stream is a stream (59). allow_none = 1 ⇒ self.next_page_i is int or None (125).
66 stream is a stream (59). allow_none = 1 ⇒ self.next_state_i is int or None (125).

67

68 stream is a readable stream.
69 stream is a stream (68). allow_none = 0 ⇒ self.predicate is an int (125).
70 stream is a stream (68). allow_none = 1 ⇒ self.group_i is int or None (125).
71 stream is a stream (68). allow_none = 0 ⇒ self.option_i is an int (125).
72 stream is a stream (68). allow_none = 0 ⇒ self.invert is an int (125).

73

74 stream is a readable stream.
75 stream is a stream (74). allow_none = 0 ⇒ self.op is an int (125).
76 stream is a stream (74). allow_none = 1 ⇒ self.group_i is int or None (125).
77 stream is a stream (74). allow_none = 0 ⇒ self.option_i is an int (125).

78

79 stream is a readable stream.
80 stream is a stream (79). Condition is a class (67). self.conditions is a list of Condition (123).
81 stream is a stream (79). allow_none = 0 ⇒ self.type is an int (125).
82 stream is a stream (79). allow_none = 0 ⇒ self.clip_i is an int (125).
83 stream is a stream (79). allow_none = 1 ⇒ self.group_i is int or None (125).
84 stream is a stream (79). allow_none = 0 ⇒ self.option_i is an int (125).

85

86 stream is a readable stream.
87 stream is a stream (87). TextGroup is a class (89). self.groups is a list of TextGroup (123).

6. Pvote 33

Ballot.py (page 2 of 3)

46 class OptionArea:
47 def __init__(self, stream):
48 self.group_i = get_int(stream, 0)
49 self.option_i = get_int(stream, 0)

50 class CounterArea:
51 def __init__(self, stream):
52 self.group_i = get_int(stream, 0)
53 self.sprite_i = get_int(stream, 0)

54 class ReviewArea:
55 def __init__(self, stream):
56 self.group_i = get_int(stream, 0)
57 self.cursor_sprite_i = get_int(stream, 1)

58 class Binding:
59 def __init__(self, stream):
60 self.key = get_int(stream, 1)
61 self.target_i = get_int(stream, 1)
62 self.conditions = get_list(stream, Condition)
63 self.steps = get_list(stream, Step)
64 self.segments = get_list(stream, Segment)
65 self.next_page_i = get_int(stream, 1)
66 self.next_state_i = get_int(stream, 1)

67 class Condition:
68 def __init__(self, stream):
69 self.predicate = get_int(stream, 0)
70 self.group_i = get_int(stream, 1)
71 self.option_i = get_int(stream, 0)
72 self.invert = get_int(stream, 0)

73 class Step:
74 def __init__(self, stream):
75 self.op = get_int(stream, 0)
76 self.group_i = get_int(stream, 1)
77 self.option_i = get_int(stream, 0)

78 class Segment:
79 def __init__(self, stream):
80 self.conditions = get_list(stream, Condition)
81 self.type = get_int(stream, 0)
82 self.clip_i = get_int(stream, 0)
83 self.group_i = get_int(stream, 1)
84 self.option_i = get_int(stream, 0)

85 class Text:
86 def __init__(self, stream):
87 self.groups = get_list(stream, TextGroup)

ASSUMPTIONS REASONS FOR VALIDITY POSTCONDITIONS
88

89 stream is a readable stream.
90 stream is a stream (90). self.name is a str (129).
91 stream is a stream (90). allow_none = 0 ⇒ self.writein is an int (125).
92 stream is a stream (90). get_str is a function (129). self.options is a list of strings (123, 129).

93

94 stream is a readable stream.
95 stream is a stream (95). allow_none = 0 ⇒ self.sample_rate is an int (125).
96 stream is a stream (85). Clip is a class (89). self.clips is a list of Clip (123).

97

98 stream is a readable stream.
99 stream is a stream (99). allow_none = 0 ⇒

get_int returns an int (125).
stream is a stream (99) ⇒ self.samples is a str.

100

101 stream is a readable stream.
102 stream is a stream (102). allow_none = 0 ⇒ self.width is an int (125).
103 stream is a stream (102). allow_none = 0 ⇒ self.height is an int (125).
104 stream is a stream (102). Layout is a class (107). self.layouts is a list of Layout (123).
105 stream is a stream (102). Image is a class (112). self.sprites is a list of Image (123).

106

107 stream is a readable stream.
108 Image is a class (112). stream is a stream (102). self.screen is a Image .
109 stream is a stream (102). Rect is a class (117). self.targets is a list of Rect (123).
110 stream is a stream (102). Rect is a class (117). self.slots is a list of Rect (123).

111

112 stream is a readable stream.
113 stream is a stream (113). allow_none = 0 ⇒ self.width is an int (125).
114 stream is a stream (113). allow_none = 0 ⇒ self.height is an int (125).
115 stream is a stream (113). self.width is an int (114).

self.height is an int (115).
stream is a stream (113) ⇒ self.pixels is a str.

116

117 stream is a readable stream.
118 stream is a stream (118). allow_none = 0 ⇒ self.left is an int (125).
119 stream is a stream (118). allow_none = 0 ⇒ self.top is an int (125).
120 stream is a stream (118). allow_none = 0 ⇒ self.width is an int (125).
121 stream is a stream (118). allow_none = 0 ⇒ self.height is an int (125).

122 stream is a stream. Returns a list of instances of Class (124).
123 stream is a stream (123). allow_none = 0 ⇒

get_int returns an int (125).

124 stream is a stream.
allow_none is 0 or 1.

Returns an int if allow_none is 0 (127, 128); else returns int or None.
125 stream is a stream (125). N! if read returns less than 4

bytes. list returns a list of 4 1-byte strings.
a, b, c , d are 1-byte strings.

126 allow_none is an int (125). a, b, c , d are strings (126).
127 a, b, c , d are 1-byte strings (126). An int is returned.

128 stream is a stream. Returns a string (130).
129 stream is a stream (129). allow_none = 0 ⇒

get_int returns an int (125).
A string is returned.

6. Pvote 34

Ballot.py (page 3 of 3)

88 class TextGroup:
89 def __init__(self, stream):
90 self.name = get_str(stream)
91 self.writein = get_int(stream, 0)
92 self.options = get_list(stream, get_str)

93 class Audio:
94 def __init__(self, stream):
95 self.sample_rate = get_int(stream, 0)
96 self.clips = get_list(stream, Clip)

97 class Clip:
98 def __init__(self, stream):
99 self.samples = stream.read(get_int(stream, 0)*2)

100 class Video:
101 def __init__(self, stream):
102 self.width = get_int(stream, 0)
103 self.height = get_int(stream, 0)
104 self.layouts = get_list(stream, Layout)
105 self.sprites = get_list(stream, Image)

106 class Layout:
107 def __init__(self, stream):
108 self.screen = Image(stream)
109 self.targets = get_list(stream, Rect)
110 self.slots = get_list(stream, Rect)

111 class Image:
112 def __init__(self, stream):
113 self.width = get_int(stream, 0)
114 self.height = get_int(stream, 0)
115 self.pixels = stream.read(self.width*self.height*3)

116 class Rect:
117 def __init__(self, stream):
118 self.left = get_int(stream, 0)
119 self.top = get_int(stream, 0)
120 self.width = get_int(stream, 0)
121 self.height = get_int(stream, 0)

122 def get_list(stream, Class):
123 return [Class(stream) for i in range(get_int(stream, 0))]

124 def get_int(stream, allow_none):
125 [a, b, c, d] = list(stream.read(4))

126 if not allow_none or a + b + c + d != "\xff\xff\xff\xff":
127 return ord(a)*16777216 + ord(b)*65536 + ord(c)*256 + ord(d)

128 def get_str(stream):
129 return stream.read(get_int(stream, 0))

ASSUMPTIONS REASONS FOR VALIDITY POSTCONDITIONS
1 ballot is a Ballot . ballot satisfies the validity constraints in Section 2.7.
2 ballot.model is a Model (1, Ballot:6). ballot.video is a

Video (1, Ballot:9).
groups is a list of Group (Ballot:17). sprites is a list of Image (Ballot:105).

3 option_sizes is a list of length(groups) empty lists.
4 char_sizes is a list of length(groups) empty lists.

5 model.groups is a list (1, Ballot:6, Ballot:17). text.groups is
a list (1, Ballot:7, Ballot:87). N! if assertion fails.

model.groups and text.groups have the same length > 0.

6 model.pages is a list (1, Ballot:6, Ballot:18). video.layouts
is a list (1, Ballot:9, Ballot:104). N! if assertion fails.

model.pages and video.layouts have the same length > 0.

7 ballot.model.pages is a list (1, Ballot:6, Ballot:18). page_i is an int. pages is a list of Page (Ballot:18) ⇒ page is a Page.
8 page_i is a valid index in model.pages (7) ⇒ page_i is

a valid index in video.layouts (6).
layouts is a list of Layout (Ballot:104) ⇒ layout is a Layout .

9 page.bindings is a list (7, Ballot:33). bindings is a list of Binding (Ballot:33) ⇒ binding is a Binding .
10 ballot is a Ballot (1). page is a Page (7). binding is a

Binding (9).
binding is a valid Binding for this page (71).

11 page.states is a list (7, Ballot:34). N! if assertion fails. page.states is nonempty.

12 page.states is a list (Ballot:34). state_i is an int. states is a list of State (Ballot:34) ⇒ state is a State .
13 N! if state.sprite_i is out of bounds. N! if state_i is

out of bounds. sprites is a list of Image (2).
layout.slots is a list of Rect (8, Ballot:110).

state.sprite_i is a valid index in video.sprites (2). state_i is a
valid index in layout.slots . The state’s sprite at state.sprite_i
fits the state’s slot at layout.slots[state_i] (103).

14 ballot is a Ballot (2). page is a Page (7). state is a State
(12) ⇒ state.segments is a list of Segment (Ballot:41).

Every element of state.segments is a valid Segment (85).

15 state.bindings is a list (Ballot:42). bindings is a list of Binding (Ballot:42) ⇒ binding is a Binding .
16 Ballot is a Ballot (2). page is a Page (7). binding is a

Binding (15).
binding is a valid Binding for this page (70).

17 ballot is a Ballot (2). page is a Page (7). state is a State
(12) ⇒ timeout_segments is a list of Segment (Ballot:41).

Every element of state.timeout_segments is a valid Segment (85).

18 ballot is a Ballot (2). timeout_page_i is an int or None
(Ballot:44). timeout_state_i is an int or None (Ballot:45).

Either timeout_page_i is None, or timeout_page_i and
timeout_state_i are a valid page and state index (82).

19 slot_i is the index of the first remaining slot after slots have been
assigned to states.

20 page.option_areas is a list (7, Ballot:35). option_areas is a list of OptionArea (7, Ballot:35) ⇒ area is an
OptionArea .

21 ballot is a Ballot (2). page is a Page (7). area is a
OptionArea (20).

area.group_i is an int (Ballot:48) ⇒ area.group_i is a valid group
index and area.option_i is a valid option index in that group (82).

22 option_sizes is a list of lists (3). area.group_i is a
valid group index (21). layout.slots is a list (Ballot:110).
N! if slot_i is out of bounds.

This page’s layout contains a slot for this option area. option_sizes for
this option area’s group contains this option area’s slot.

23 slot_i is an int (19, 23). slot_i is the index of the next available slot.

24 page.counter_areas is a list (7, Ballot:36). counter_areas is a list of CounterArea (7, Ballot:36) ⇒ area is a
CounterArea .

25 N! if area.group_i is out of bounds. groups is a list of
Group (2) ⇒ groups[area.group_i].max_sels is
an int (Ballot:22).

area.group_i is a valid group index. i is an int from 0 to max_sels
inclusive.

26 area.sprite_i is an int (Ballot:53). N! if area.sprite_i
+ i is out of bounds. N! if slot_i is out of bounds.

This page’s layout contains a slot for this counter area. The sprite at
area.sprite_i + i fits the counter area’s slot (103).

27 slot_i is an int (19, 23, 27). slot_i is the index of the next available slot.

6. Pvote 35

6.2.3 verifier.py

1 def verify(ballot):
2 [groups, sprites] = [ballot.model.groups, ballot.video.sprites]
3 option_sizes = [[] for group in groups]
4 char_sizes = [[] for group in groups]

5 assert len(ballot.model.groups) == len(ballot.text.groups) > 0

6 assert len(ballot.model.pages) == len(ballot.video.layouts) > 0

7 for [page_i, page] in enumerate(ballot.model.pages):
8 layout = ballot.video.layouts[page_i]

9 for binding in page.bindings:
10 verify_binding(ballot, page, binding)

11 assert len(page.states) > 0

12 for [state_i, state] in enumerate(page.states):
13 verify_size(sprites[state.sprite_i], layout.slots[state_i])

14 verify_segments(ballot, page, state.segments)

15 for binding in state.bindings:
16 verify_binding(ballot, page, binding)

17 verify_segments(ballot, page, state.timeout_segments)

18 verify_goto(ballot, state.timeout_page_i, state.timeout_state_i)

19 slot_i = len(page.states)

20 for area in page.option_areas:

21 verify_option_ref(ballot, page, area)

22 option_sizes[area.group_i].append(layout.slots[slot_i])

23 slot_i = slot_i + 1

24 for area in page.counter_areas:

25 for i in range(groups[area.group_i].max_sels + 1):

26 verify_size(sprites[area.sprite_i + i], layout.slots[slot_i])

27 slot_i = slot_i + 1

ASSUMPTIONS REASONS FOR VALIDITY POSTCONDITIONS
28 page.review_areas is a list (7, Ballot:37). review_areas is a list of ReviewArea (7, Ballot:37) ⇒ area is a

ReviewArea .

29 N! if area.group_i is out of bounds. groups is a list of
Group (2) ⇒ groups[area.group_i].max_sels is an
int (Ballot:22).

area.group_i is a valid group index. i is an int from 0 to
max_sels − 1 inclusive.

30 option_sizes is a list of lists (3). area.group_i is a valid
group index (29). N! if slot_i is out of bounds.

This page’s layout contains enough option slots for this review area
(29). option_sizes for this review area’s group contains all of the
review area’s option slots.

31 slot_i is an int (19, 23, 27, 31). slot_i is the index of the next available slot.
32 area.group_i is a valid group index (29). groups is a list of

Group (2) ⇒ groups[area.group_i].max_chars is an
int (Ballot:23).

j is an int from 0 to max_chars − 1 inclusive.

33 char_sizes is a list of lists (4). area.group_i is a valid
group index (29). N! if slot_i is out of bounds.

This page’s layout contains enough character slots for this review area
(33). char_sizes for this review area’s group contains all of the
review area’s character slots.

34 slot_i is an int (31, 34). slot_i is the index of the next available slot.
35 area.cursor_sprite_i is an int or None (Ballot:57).
36 option_sizes is a list of lists (3). area.group_i is a valid

group index (29). N! if area.cursor_sprite_i is out of
bounds.

area.cursor_sprite_i is None, or it is a valid sprite index and
option_sizes for this review area’s group contains the review
area’s cursor sprite.

37 groups is a list (2). group_i is an int. groups is a list of Group (2) ⇒ group is a Group .
38 group.options is a list (37, Ballot:25). group.options is a list of Option (37, Ballot:25) ⇒ option is a Option .
39 option_sizes is a list of lists (3). group_i is a valid group

index (36). N! if option.sprite_i is out of bounds.
option.sprite_i is a valid sprite index. option_sizes for this

group contains the option’s selected sprite.

40 option_sizes is a list of lists (3). group_i is a valid group
index (36). N! if option.sprite_i + 1 is out of bounds.

option.sprite_i + 1 is a valid sprite index. option_sizes for
this group contains the option’s unselected sprite.

41 group is a Group (37). N! if assertion fails. group.option_clips is at least 1.

42 ballot.audio.clips is a list (1, Ballot:8, Ballot:96). N! if
option.clip_i + group.option_clips − 1 is out of
bounds.

ballot.audio.clips contains at least group.option_clips
elements starting at option.clip_i .

43 option is a Option (38).
44 groups is a list of Group (2). option is a Option (38). N! if

option.writein_group_i is out of bounds.
option.writein_group_i is None (43), or it is a valid group index

and writein_group is a Group .

45 writein_group is a Group (44). N! if assertion fails. max_chars = 0 for this option’s write-in group.
46 writein_group is a Group (44). group is a Group . N! if

assertion fails.
max_sels for this option’s write-in group matches max_chars for

this option’s parent group. group.max_chars > 0 ⇒ group
cannot be the write-in group for any option (43–45).

47 writein_group.options is a list (44, Ballot:25). options is a list of Option (44, Ballot:25) ⇒ option is an Option .
48 char_sizes is a list of lists (4). group_i is a valid group

index (36). N! if option.sprite_i is out of bounds.
All the options in the write-in group have valid sprite indices.

char_sizes for the parent group contains all their sprites.

49 group_i is a valid group index (37).
option_sizes[group_i] is a list (3).

option_sizes[group_i] is a list of Slot or Sprite objects (22, 30, 36,

39, 40) ⇒ size is a Slot or Sprite .

50 group_i is a valid group index (37). size is a Slot or Sprite
(49). option_sizes[group_i][0] is a Slot or Sprite (49).

All the slots and sprites for options in this group have the same size.

51 group_i is a valid group index (37). char_sizes[group_i]
is a list (3).

char_sizes[group_i] is a list of Slot or Sprite objects (33, 48) ⇒
size is a Slot or Sprite .

52 group_i is a valid group index (37). size is a Slot or Sprite
(51). char_sizes[group_i][0] is a Slot or Sprite (51).

All the slots and sprites for characters in write-in options in this group
have the same size.

6. Pvote 36

verifier.py (page 2 of 4)

28 for area in page.review_areas:

29 for i in range(groups[area.group_i].max_sels):

30 option_sizes[area.group_i].append(layout.slots[slot_i])

31 slot_i = slot_i + 1
32 for j in range(groups[area.group_i].max_chars):

33 char_sizes[area.group_i].append(layout.slots[slot_i])

34 slot_i = slot_i + 1
35 if area.cursor_sprite_i != None:
36 option_sizes[area.group_i].append(sprites[area.cursor_sprite_i])

37 for [group_i, group] in enumerate(groups):
38 for option in group.options:
39 option_sizes[group_i].append(sprites[option.sprite_i])

40 option_sizes[group_i].append(sprites[option.sprite_i + 1])

41 assert group.option_clips > 0

42 ballot.audio.clips[option.clip_i + group.option_clips - 1]

43 if option.writein_group_i != None:
44 writein_group = groups[option.writein_group_i]

45 assert writein_group.max_chars == 0
46 assert writein_group.max_sels == group.max_chars > 0

47 for option in writein_group.options:
48 char_sizes[group_i].append(sprites[option.sprite_i])

49 for size in option_sizes[group_i]:

50 verify_size(size, option_sizes[group_i][0])

51 for size in char_sizes[group_i]:

52 verify_size(size, char_sizes[group_i][0])

ASSUMPTIONS REASONS FOR VALIDITY POSTCONDITIONS
53 ballot.text.groups is a list (1, Ballot:7, Ballot:87). ballot.text.groups and groups have the same length (5) ⇒

group_i is a valid group index. ballot.text.groups is a list of
TextGroup (1, Ballot:7, Ballot:87) ⇒ group is a TextGroup .

54 group.name is a string (53, Ballot:90). char is a 1-byte string.
55 char is a 1-byte string (54). N! if assertion fails. Every byte in group.name is printable.
56 group_i is a valid group index (53). group.options is a list

(53, Ballot:92). groups[group_i].options is a list (Ballot:25).
This TextGroup group has the same number of options as its

corresponding Group in model.groups .

57 group.options is a list (53, Ballot:92). group.options is a list of strings (53, Ballot:92) ⇒ option is a string.
58 option is a string (57). char is a 1-byte string.
59 char is a 1-byte string (58). N! if assertion fails. Every byte in option is printable.

60 ballot.audio.clips is a list (1, Ballot:8, Ballot:96). audio.clips is a list of Clip (1, Ballot:8, Ballot:96) ⇒ clip is a Clip .
61 clip.samples is a string (60, Ballot:99). N! if assertion fails. Every Clip in audio.clips has a nonempty string of samples .

62 ballot.video is a Video (1, Ballot:9) ⇒ width and height
are ints (Ballot:102, Ballot:103). N! if assertion fails.

ballot.video has a nonzero width and nonzero height .

63 ballot.video.layouts is a list (1, Ballot:9, Ballot:104). layouts is a list of Layout (1, Ballot:9, Ballot:104) ⇒ layout is a Layout .
64 layout.screen is an Image (63, 110). ballot.video is a

Video (1, 9).
layout.screen has the same size as ballot.video .

65 layout.targets is a list of Rect (63, Ballot:109).
layout.slots is a list of Rect (63, Ballot:110).

The sum of lists is a list of Rect ⇒ rect is a Rect .

66 rect is a Rect (65). ballot.video is a Video (1, Ballot:8). rect does not extend beyond the right edge of the screen.
67 rect is a Rect (65). ballot.video is a Video (1, Ballot:8). rect does not extend beyond the bottom edge of the screen.
68 ballot.video.sprites is a list (1, Ballot:8, Ballot:105). sprites is a list of Image (1, Ballot:8, Ballot:105) ⇒ sprite is a Image .
69 sprite is an Image . sprite has a nonzero width and height and the correct amount of

pixel data for a width × height image.

70 ballot is a Ballot .
page is a Page.
binding is a
Binding .

binding is a valid Binding .
71 binding.conditions is a list (70, Ballot:62). conditions is a list of Condition (70, Ballot:62) ⇒ condition is a

Condition .

72 ballot is a Ballot (70). page is a Page (70). condition is a
Condition (71).

All the conditions in binding.conditions are valid.

73 binding.steps is a list (70, Ballot:63). binding.steps is a list of Step (70, Ballot:63) ⇒ steps is a Step .
74 step is a Step (73). N! if assertion fails. step.op is 0, 1, 2, 3, or 4.
75 ballot is a Ballot (70). page is a Page (70). step is a Step (73). step.group_i and step.option_i form a valid option reference.
76 ballot is a Ballot (70). page is a Page (70).

binding.segments is a list of Segment (70, Ballot:64).
All the segments in binding.segments are valid for this page (85).

77 ballot is a Ballot (70). binding.next_page_i is an int (70,

Ballot:65). binding.next_state_i is an int (70, Ballot:66).
Either next_page_i is None, or next_page_i is a valid page index

and next_state_i is a valid state index for that page (82).

78 ballot is a Ballot .
page is a Page.
condition is a
Condition .

condition is a valid Condition .
79 condition.predicate is int (78, Ballot:69). N! if assertion fails. condition.predicate is 0, 1, or 2.
80 ballot is a Ballot (78). page is a Page (78). step is a

Condition (78).
condition.group_i and condition.option_i form a valid

option reference.

81 condition.invert is an int (78, Ballot:72). N! if assertion fails. condition.invert is 0 or 1.

82 ballot is a Ballot .
page_i and
state_i are
ints.

Either page_i is None (83), or page_i is a valid page index and
state_i is a valid state index for that page (84).83

84 ballot.model.pages is a list of Page (83, Ballot:6, Ballot:18). N!

if page_i is out of bounds. N! if state_i is out of bounds.
page_i is a valid page index and state_i is a valid state index for

that page.

6. Pvote 37

verifier.py (page 3 of 4)

53 for [group_i, group] in enumerate(ballot.text.groups):

54 for char in list(group.name):
55 assert 32 <= ord(char) < 127
56 assert len(group.options) == len(groups[group_i].options)

57 for option in group.options:
58 for char in list(option):
59 assert 32 <= ord(char) < 127

60 for clip in ballot.audio.clips:
61 assert len(clip.samples) > 0

62 assert ballot.video.width*ballot.video.height > 0

63 for layout in ballot.video.layouts:
64 verify_size(layout.screen, ballot.video)

65 for rect in layout.targets + layout.slots:

66 assert rect.left + rect.width <= ballot.video.width
67 assert rect.top + rect.height <= ballot.video.height
68 for sprite in ballot.video.sprites:
69 assert len(sprite.pixels) == sprite.width*sprite.height*3 > 0

70 def verify_binding(ballot, page, binding):
71 for condition in binding.conditions:

72 verify_condition(ballot, page, condition)

73 for step in binding.steps:
74 assert step.op in [0, 1, 2, 3, 4]
75 verify_option_ref(ballot, page, step)
76 verify_segments(ballot, page, binding.segments)

77 verify_goto(ballot, binding.next_page_i, binding.next_state_i)

78 def verify_condition(ballot, page, condition):
79 assert condition.predicate in [0, 1, 2]
80 verify_option_ref(ballot, page, condition)

81 assert condition.invert in [0, 1]

82 def verify_goto(ballot, page_i, state_i):
83 if page_i != None:
84 ballot.model.pages[page_i].states[state_i]

ASSUMPTIONS REASONS FOR VALIDITY POSTCONDITIONS
85 ballot is a Ballot . page is a Page.

segments is a list of Segment .
Every segment in segments is a valid Segment .

86 segments is a list (85). segments is a list of Segment (85) ⇒ segment is a
Segment .

87 segment.conditions is a list (86, Ballot:80). segment.conditions is a list of Condition (86, Ballot:80) ⇒
condition is a Condition .

88 ballot is a Ballot (85). page is a Page (85). condition
is a Condition (87).

All the conditions in segment.conditions are valid.

89 segment is a Segment (86). N! if assertion fails. segment.type is 0, 1, 2, 3, or 4.
90 ballot.audio.clips is a list of Clip (1, Ballot:8,

Ballot:96).
segment.clip_i is a valid clip index.

91

92 ballot is a Ballot (85). page is a Page (85). segment is
a Segment (85).

The segment’s group_i and option_i form a valid option
reference. group is the referenced Group .93

94 segment.clip_i is an int (86, Ballot:82).
group.option_clips is an int (92, Ballot:24).

If type is 1 or 2, segment.clip_i is a valid option clip
offset for the referenced group (92, 93).95

96 ballot.audio.clips is a list (1, Ballot:8, Ballot:96).
segment.clip_i is an int (86, Ballot:82).
group.max_sels is an int (92, Ballot:22).

If type is 3 or 4, segment.clip_i + max_sels is a valid
clip index for the referenced group (92, 95).

97 ballot is a Ballot . page is a
Page. object is an OptionArea ,
Condition , Step , or Segment .

Either object.group_i is a valid group index and
object.option_i is a valid option index in that group,
or object.group_i is None and object.option_i is a
valid option area index in page . Returns the Group
referenced by the object’s group_i and option_i (100, 102).

98

99 page.option_areas is a list of OptionArea (7,

Ballot:35). N! if object.option_i is out of bounds.
If group_i is None, then option_i is a valid option area

index for the given page. area is an OptionArea .

100 ballot.model.groups is a list (1, Ballot:6, Ballot:17).
area is an OptionArea (99). N! if area.group_i is
out of bounds.

The referenced option area’s group is returned.

101 ballot.model.groups is a list (1, Ballot:6, Ballot:17). N! if
object.group_i is out of bounds.
groups[object.group_i].options is a list (25).
N! if object.option_i is out of bounds.

If group_i is not None, then group_i is a valid group
index and option_i is a valid option index in that group.

102 ballot.model.groups is a list (1, Ballot:6, Ballot:17).
group_i is a valid group index (101).

The referenced group is returned.

103 a is a Video , Image , or Rect . b is a
Video , Image , or Rect .

a and b have equal width and equal height .
104 a.width and b.width are ints (108, Ballot:103, Ballot:114,

Ballot:120). a.height and b.height are ints (108,

Ballot:104, Ballot:115, Ballot:121).

6. Pvote 38

verifier.py (page 4 of 4)

85 def verify_segments(ballot, page, segments):
86 for segment in segments:

87 for condition in segment.conditions:

88 verify_condition(ballot, page, condition)

89 assert segment.type in [0, 1, 2, 3, 4]
90 ballot.audio.clips[segment.clip_i]
91 if segment.type in [1, 2, 3, 4]:
92 group = verify_option_ref(ballot, page, segment)
93 if segment.type in [1, 2]:
94 assert segment.clip_i < group.option_clips
95 if segment.type in [3, 4]:
96 ballot.audio.clips[segment.clip_i + group.max_sels]

97 def verify_option_ref(ballot, page, object):

98 if object.group_i == None:
99 area = page.option_areas[object.option_i]

100 return ballot.model.groups[area.group_i]

101 ballot.model.groups[object.group_i].options[object.option_i]

102 return ballot.model.groups[object.group_i]

103 def verify_size(a, b):
104 assert a.width == b.width and a.height == b.height

INVARIANTS INV1. OP_ADD= 0, OP_REMOVE= 1, OP_APPEND= 2, OP_POP= 3, OP_CLEAR= 4 (1).
INV2. SG_CLIP = 0, SG_OPTION= 1, SG_LIST_SELS = 2, SG_COUNT_SELS= 3, SG_MAX_SELS= 4 (2).
INV3. PR_GROUP_EMPTY= 0, PR_GROUP_FULL= 1, PR_OPTION_SELECTED= 2 (3).

In an initialized Navigator object:
INV4. self.model is a valid Model (6).
INV5. self.audio is a Audio.Audio (7).
INV6. self.video is a Video.Video (7).
INV7. self.printer is a Printer (7).
INV8. self.selections is a list of length(model.groups) lists (8).
INV9. self.selections[i] always contains at most model.groups[i].max_sels elements (8, 82, 83).
INV10. The elements of self.selections[i] are always valid indexes into model.groups[i].options (83).
INV11. self.page_i is a valid page index and self.page is the Page at self.model.pages[self.page_i] (16).
INV12. self.state_i is a valid state index in the page self.page and self.state is the State at

self.page.states[self.state_i] (17).

ASSUMPTIONS REASONS FOR VALIDITY POSTCONDITIONS
1 INV1.
2 INV2.
3 INV3.

4

5 model is a valid Model . audio is a
Audio.Audio . video is a
Video.Video . printer is a
Printer.Printer .6 INV4.

7 INV5, INV6, INV7.
8 model.groups is a list (INV4, Ballot:17). INV8. self.selections is a list of

length(model.groups) empty lists.9

10 There is at least one page and one
state in the page.

0 is a valid page or state index.
11

12 Either page_i is None, or page_i
is a valid page index and
state_i is a valid state index in
that page.

13 self.model.pages is a list (INV4, Ballot:18). page_i and state_i are a valid page
index and state index (12).14

15 INV7, INV8, INV10.
16 self.model.pages is a list (INV4, Ballot:18). page_i is a valid page index

(13).
INV11. self.page_i and

self.page are the current page.

17 self.page.states is a list (INV4, Ballot:18). state_i is a valid state index
(13).

INV12. self.state_i and
self.state are the current state.

18 self.state.segments is a list of valid Segments (16, verifier:14).

19

20 INV9 and model.pages and video.layouts have equal length (verifier:6)

⇒ self.page_i is a valid layout index.

21 The sprite at self.state.sprite_i is the same size as the slot at
self.state_i (verifier:13).

22 slot_i points to the next available
slot after the states’ slots.

23 self.page.option_areas is a list (INV9, Ballot:35). option_areas is a list of OptionArea
⇒ area is an OptionArea .

24 area is an OptionArea (23). INV8. area.group_i is a valid group index
(verifier:21).

unselected is 0 if this option area
contains a selected option, else it is 1.

25 area.group_i is a valid group index (verifier:21).
26 area.group_i and area.option_i are a valid option reference (verifier:21).
27 unselected is 0 or 1 (24). slot_i is this option area’s slot index (22, 23, 28).

This option area’s slot (verifier:22), sprite option.sprite_i (verifier:39) and
sprite option.sprite_i + 1 (verifier:40) all have the same size (verifier:50).

The unselected or selected sprite for
this option is correctly displayed in
this option area.

28

6. Pvote 39

6.2.4 Navigator.py

1 [OP_ADD, OP_REMOVE, OP_APPEND, OP_POP, OP_CLEAR] = range(5)
2 [SG_CLIP, SG_OPTION, SG_LIST_SELS, SG_COUNT_SELS, SG_MAX_SELS] = range(5)
3 [PR_GROUP_EMPTY, PR_GROUP_FULL, PR_OPTION_SELECTED] = range(3)

4 class Navigator:
5 def __init__(self, model, audio, video, printer):

6 self.model = model
7 [self.audio, self.video, self.printer] = [audio, video, printer]
8 self.selections = [[] for group in model.groups]
9 self.page_i = None

10 self.goto(0, 0)
11 self.update()

12 def goto(self, page_i, state_i):
13 if page_i != None and self.page_i != len(self.model.pages) - 1:
14 if page_i == len(self.model.pages) - 1:
15 self.printer.write(self.selections)
16 [self.page_i, self.page] = [page_i, self.model.pages[page_i]]

17 [self.state_i, self.state] = [state_i, self.page.states[state_i]]

18 self.play(self.state.segments)

19 def update(self):
20 self.video.goto(self.page_i)

21 self.video.paste(self.state.sprite_i, self.state_i)

22 slot_i = len(self.page.states)

23 for area in self.page.option_areas:

24 unselected = area.option_i not in self.selections[area.group_i]

25 group = self.model.groups[area.group_i]
26 option = group.options[area.option_i]
27 self.video.paste(option.sprite_i + unselected, slot_i)
28 slot_i = slot_i + 1

ASSUMPTIONS REASONS FOR VALIDITY POSTCONDITIONS
29 self.page.counter_areas is a list (INV11, Ballot:36). counter_areas is a list of

CounterArea ⇒ area is an
CounterArea .

30 area is a CounterArea (29). INV8. area.group_i is a valid group index
(verifier:21).

INV9 ⇒ count is an int ≤ groups[
area.group_i].max_sels .

31 count is an int from 0 to max_sels . slot_i is this counter area’s slot
index (22, 23, 28, 29, 32). This counter area’s slot matches the size of all the
sprites from area.sprite_i to area.sprite_i + max_sels (verifier:26).

The counter area displays the correct
sprite indicating the number of
selections in its group.

32

33 self.page.review_areas is a list (INV11, Ballot:37). review_areas is a list of ReviewArea
⇒ area is an ReviewArea .

34 area.group_i is a valid group index (verifier:29). slot_i is this review
area’s first slot index (22, 23, 28, 29, 32, 33, 34). ∀ k ∈ {0, 1, . . . , max_sels − 1},
slot_i + k × (1 + max_chars) is the valid index of a slot with size
matching the group’s options’ sprites (verifier:30–34, verifier:39, verifier:49–50).
area.cursor_sprite_i is a valid sprite index or None (verifier:36).

The review area is properly populated
with options. slot_i is the first slot
after this review area’s slots.

35 group_i is a valid group index. ∀ k
∈ {0, 1, . . . , max_sels − 1},
slot_i + k × (1 + max_chars)
is the valid index of a slot with
size matching the group’s options’
sprites. cursor_sprite_i is
None or a valid sprite index.

The review area shows the selections in
its group, with write-in text for any
selected write-in options. Returns
slot_i + max_sels × (1 +
max_chars) (47).

36 group_i is a valid group index (35). group is the review area’s group.
37 group_i is a valid group index (35). selections is the group’s selections.
38 group.max_sels is an int (35, Ballot:22). i is an int from 0 to max_sels − 1.
39 i is an int (38). selections is a list (37).
40 i is a valid index into selections (39). selections[i] is a valid index

into group.options (36, 37, INV10).
option is a selected Option in group

group_i (Ballot:25).

41 option.sprite_i is a valid sprite index (verifier:39). slot_i is a valid slot
index of equal size (35, 46).

The review area shows the sprites for
the selected options in its group.42

43 writein_group_i is a valid group index (verifier:44, 42). That group has
max_chars = 0 (verifier:43, verifier:45) and max_sels = group.max_chars
(verifier:46). ∀ k ∈ {0, 1, . . . , group.max_chars − 1}, slot_i + 1 + k is
the valid index of a slot with size matching the write-in group’s options’
sprites (verifier:31–34, verifier:47–48, verifier:51–52).

The review area shows the write-in
characters for this selected option.

44

45 cursor_sprite_i is a valid sprite index (35, 44). The cursor sprite has the
same size as slot slot_i (verifier:30, verifier:36, verifier:50).46 slot_i is the first slot for the next

option in this review area.

47 slot_i + max_sels × (1 +
max_chars) is returned (38, 46).

48 key is an int. The operative binding, if any, for this
keypress is invoked. Returns None.

49 state.bindings is a list (INV11, Ballot:42). page.bindings is a list
(INV10, Ballot:33).

The lists contain only valid Binding s
(verifier:10, verifier:16) ⇒ binding is a
valid Binding .

50 binding.key is an int (49, Ballot:60). binding.conditions is a list of valid
Condition s (49, Ballot:62, verifier:72).

51 binding is a valid Binding (49). If binding is operative, it is invoked.
Returns None (69).

52 target_i is an int. The operative binding, if any, for this
target is invoked. Returns None.

53 state.bindings is a list (INV11, Ballot:42). page.bindings is a list
(INV10, Ballot:33).

The lists contain only valid Binding s
(verifier:10, verifier:16) ⇒ binding is a
valid Binding .

54 binding.target_i is an int (53, Ballot:61). binding.conditions is a list
of valid Condition s (53, Ballot:62, verifier:72).

55 binding is a valid Binding (53). If binding is operative, it is invoked.
Returns None (69).

6. Pvote 40

Navigator.py (page 2 of 4)

29 for area in self.page.counter_areas:

30 count = len(self.selections[area.group_i])

31 self.video.paste(area.sprite_i + count, slot_i)
32 slot_i = slot_i + 1

33 for area in self.page.review_areas:

34 slot_i = self.review(area.group_i, slot_i, area.cursor_sprite_i)

35 def review(self, group_i, slot_i, cursor_sprite_i):

36 group = self.model.groups[group_i]
37 selections = self.selections[group_i]
38 for i in range(group.max_sels):
39 if i < len(selections):
40 option = group.options[selections[i]]

41 self.video.paste(option.sprite_i, slot_i)
42 if option.writein_group_i != None:
43 self.review(option.writein_group_i, slot_i + 1, None)

44 if i == len(selections) and cursor_sprite_i != None:
45 self.video.paste(cursor_sprite_i, slot_i)
46 slot_i = slot_i + 1 + group.max_chars

47 return slot_i

48 def press(self, key):

49 for binding in self.state.bindings + self.page.bindings:

50 if key == binding.key and self.test(binding.conditions):

51 return self.invoke(binding)

52 def touch(self, target_i):

53 for binding in self.state.bindings + self.page.bindings:

54 if target_i == binding.target_i and self.test(binding.conditions):

55 return self.invoke(binding)

ASSUMPTIONS REASONS FOR VALIDITY POSTCONDITIONS
56 conditions is a list of valid

Condition s.
Returns 1 if all the conditions are met,

otherwise 0 (67, 68).

57 conditions is a list (56). conditions is a list of valid
Condition s (56) ⇒ cond is a valid
Condition .

58 cond is a valid Condition (58). group_i and option_i are a valid
group index and option index (118).

59 cond.predicate is 0, 1, or 2 (verifier:79). PR_GROUP_EMPTYis 0 (INV3).
60 group_i is the valid index of a list in self.selections (56, INV8). result is 1 if the group is empty,

otherwise 0.61 cond.predicate is 0, 1, or 2 (verifier:79). PR_GROUP_FULLis 1 (INV3).
62 group_i is a valid group index (58). max is an int (INV4, Ballot:22).

63 group_i is the valid index of a list in self.selections (58, INV8). result is 1 if the group is full,
otherwise 0.64 cond.predicate is 0, 1, or 2 (verifier:79). PR_OPTION_SELECTEDis 2 (INV3).

65 group_i is the valid index of a list in self.selections (58, INV8). result is 1 if the option is selected,
otherwise 0.66 cond.invert is 0 or 1 (verifier:81).

67 0 is returned if any condition is not met.
68 1 is returned if no condition is not met.

69 binding is a valid Binding . binding is invoked. Returns None.
70 binding.steps is a list (Ballot:63). binding.steps is a list of Binding

(Ballot:63) ⇒ step is a Step .71 step is a Step (70).
72 INV5.
73 binding.segments is a list of valid Segment s (69, verifier:76).
74 Either next_page_i is None or next_page_i and

binding.next_state_i are a valid page index and state index (69,

verifier:77).
75

76 step is a Step . The step is executed. Returns None.
77 step is a Step (76) with a valid option reference (verifier:75). group_i and option_i are the group

and option referenced by step (118).

78 group_i is a valid group index (77). group is the step’s group.
79 group_i is a valid index into self.selections (77, INV8). selections is the group’s selections.
80 option_i is an int (77). selections is a list (79). selected is 1 if the referenced option

is selected, otherwise 0.

81 step.op is 0, 1, 2, 3, or 4 (verifier:74). OP_ADDis 0 and OP_APPENDis 2 (INV1).
82 selections is a list (79). group.max_sels is an int (78, Ballot:22).
83 selections is a list (79). option_i is an int (77). option_i is added to the selections

for group_i .84 step.op is 0, 1, 2, 3, or 4 (verifier:74). OP_REMOVEis 1 (INV1).
85 selections is a list (79). option_i is an int (77). option_i is removed from the

selections for group_i .

86 step.op is 0, 1, 2, 3, or 4 (verifier:74). OP_POPis 3 (INV1).
87 selections is a non-empty list (79, 86). The last item is removed from this

group’s selections .88 step.op is 0, 1, 2, 3, or 4 (verifier:74). OP_CLEARis 4 (INV1).
89 group_i is a valid index into self.selections (77, INV8). This group’s selections are cleared.

6. Pvote 41

Navigator.py (page 3 of 4)

56 def test(self, conditions):

57 for cond in conditions:

58 [group_i, option_i] = self.get_option(cond)

59 if cond.predicate == PR_GROUP_EMPTY:
60 result = len(self.selections[group_i]) == 0
61 if cond.predicate == PR_GROUP_FULL:
62 max = self.model.groups[group_i].max_sels

63 result = len(self.selections[group_i]) == max
64 if cond.predicate == PR_OPTION_SELECTED:
65 result = option_i in self.selections[group_i]
66 if cond.invert == result:
67 return 0
68 return 1

69 def invoke(self, binding):
70 for step in binding.steps:
71 self.execute(step)
72 self.audio.stop()
73 self.play(binding.segments)
74 self.goto(binding.next_page_i, binding.next_state_i)
75 self.update()

76 def execute(self, step):
77 [group_i, option_i] = self.get_option(step)

78 group = self.model.groups[group_i]
79 selections = self.selections[group_i]
80 selected = option_i in selections

81 if step.op == OP_ADD and not selected or step.op == OP_APPEND:
82 if len(selections) < group.max_sels:
83 selections.append(option_i)
84 if step.op == OP_REMOVE and selected:
85 selections.remove(option_i)

86 if step.op == OP_POP and len(selections) > 0:
87 selections.pop()
88 if step.op == OP_CLEAR:
89 self.selections[group_i] = []

ASSUMPTIONS REASONS FOR VALIDITY POSTCONDITIONS
90 The current state’s timeout segments

are played, if any, and transition is
followed, if any.

91 timeout_segments is a list of valid Segment s (INV12, Ballot:43, verifier:17).
92 Either timeout_page_i is None or timeout_page_i and

timeout_state_i are a valid page index and state index (INV12,

verifier:18).
93

94 segments is a list of valid
Segment s.

The sequence of segments is played.
95 segments is a list (94). segments is a list of valid Segment s

(94) ⇒ segment is a valid Segment .96 segment.conditions is a list of valid Condition s (95, Ballot:80). self.test
returns 0 or 1 (verifier:54).

97 segment.type is 0, 1, 2, 3, or 4 (verifier:89). SG_CLIP is 0 (INV2).
98 segment.clip_i is a valid clip index (verifier:90).
99

100 segment is a valid Segment (95). group_i and option_i are a valid
group index and option index (118).

101 group_i is a valid group index (100). group is the segment’s group.
102 group_i is a valid group index (100). selections is the group’s selections.

103 segment.type is 0, 1, 2, 3, or 4 (verifier:89). SG_OPTIONis 1 (INV2).
104 option_i is a valid option index (100). segment.clip_i <

group.option_clips (verifier:94).

105 segment.type is 0, 1, 2, 3, or 4 (verifier:89). SG_LIST_SELS is 2 (INV2).
106 selections is a list (102). selections contains valid option

indices (INV10) ⇒ option_i is a
valid option index.

107 option_i is a valid option index (106). segment.clip_i <
group.option_clips (verifier:94).

108 segment.type is 0, 1, 2, 3, or 4 (verifier:89). SG_COUNT_SELSis 3 (INV2).
109 length(selections) ≤ max_sels (INV9) and segment.clip_i +

max_sels is a valid clip index (verifier:96) ⇒ segment.clip_i +
length(selections) is a valid clip index.

110 segment.type is 0, 1, 2, 3, or 4 (verifier:89). SG_MAX_SELSis 4 (INV2).
111 segment.clip_i + max_sels is a valid clip index (verifier:96).

112 option is an Option . 0 ≤ offset
< group.option_clips for the
option’s group.

The clip for option at offset offset is
played; if the option is a write-in
option, the clips for the selected
write-in characters at offset 0 are also
played.

113 option.clip_i + group.option_clips − 1 is a valid clip index
(verifier:42) and offset < group.option_clips (112) ⇒
option.clip_i + offset is a valid clip index.

114

115 option.writein_group_i is a valid group index (verifier:44). writein_group is a Group (INV4,

Ballot:17).

116 option.writein_group_i is a valid index into self.selections
(verifier:44, INV8).

option_i is a valid option index in
writein_group (INV10.)

117 option_i is a valid option index in writein_group (116). clip_i is a
valid clip index (verifier:41, verifier:42).

118 object is a valid Condition , Step ,
or Segment contained within
self.page .

Returns a list of two ints [group_i,
option_i] where group_i is a
valid group index and option_i is
a valid option index in that group
(121, 122).

119 object.group_i is an int or None (118).
120 object.group_i is None (119) and object is contained within

self.page (118) ⇒ object.option_i is a valid option area index in
self.page (verifier:75, verifier:80, verifier:92, verifier:99).

121 area.group_i is an int (Ballot:48) ⇒ a
valid group index and option index
are returned (verifier:21).

122 object.group_i is an int (119) ⇒ a
valid group index and option index
are returned (verifier:75, verifier:80,

verifier:92, verifier:99).

6. Pvote 42

Navigator.py (page 4 of 4)

90 def timeout(self):
91 self.play(self.state.timeout_segments)
92 self.goto(self.state.timeout_page_i, self.state.timeout_state_i)
93 self.update()

94 def play(self, segments):
95 for segment in segments:
96 if self.test(segment.conditions):

97 if segment.type == SG_CLIP:
98 self.audio.play(segment.clip_i)
99 else:

100 [group_i, option_i] = self.get_option(segment)

101 group = self.model.groups[group_i]
102 selections = self.selections[group_i]

103 if segment.type == SG_OPTION:
104 self.play_option(group.options[option_i], segment.clip_i)

105 if segment.type == SG_LIST_SELS:
106 for option_i in selections:
107 self.play_option(group.options[option_i], segment.clip_i)

108 if segment.type == SG_COUNT_SELS:
109 self.audio.play(segment.clip_i + len(selections))

110 if segment.type == SG_MAX_SELS:
111 self.audio.play(segment.clip_i + group.max_sels)

112 def play_option(self, option, offset):

113 self.audio.play(option.clip_i + offset)

114 if option.writein_group_i != None:
115 writein_group = self.model.groups[option.writein_group_i]

116 for option_i in self.selections[option.writein_group_i]:

117 self.audio.play(writein_group.options[option_i].clip_i)

118 def get_option(self, object):

119 if object.group_i == None:
120 area = self.page.option_areas[object.option_i]

121 return [area.group_i, area.option_i]

122 return [object.group_i, object.option_i]

INVARIANTS In an initialized Audio.Audio object:
INV1. self.clips is a list of Sound the same length as ballot.audio.clips (7).
INV2. self.queue is a list (8, 18).
INV3. Each element of self.queue is a valid index into ballot.audio.clips (10).
INV4. Each element of self.queue is a valid index into self.clips (by INV1 and INV3.)
INV5. self.playing is an int (8, 14).

ASSUMPTIONS REASONS FOR VALIDITY POSTCONDITIONS
1 pygame is bound to the Pygame module.
2 pygame.USEREVENTis an int. AUDIO_DONEis an int.

3

4 audio is a Ballot.Audio object.
5 sample_rate is an int (Ballot:123) ⇒ rate is

an int.6 rate is an int (5). N! if rate is not accepted as a valid sample rate.
7 audio is a Ballot.Audio (4) ⇒ audio.clips is a list of Ballot.Clip

(Ballot:49) ⇒ clip.samples is a string.
self.clips is a list of Sound with the

same length as audio.clips .8

9 clip_i is a valid index into
ballot.audio.clips .10 INV2.

11 INV5.
12

13

14 INV2.
15 INV2.
16 INV4. self.queue is nonempty (15). INV1. The play() method of

Sound returns a Channel . AUDIO_DONEis an int (2).

17

18

19

20 rate is an int. data is a string. Returns a Sound (24).
21

22 rate is an int (22). putint returns a string (31). fmt is a string (21).
23 fmt and data are strings (24, 22).
24 file is a string (25). Buffer yields an object with a read method. See

Appendix C to verify that the WAV file passed to Sound is
well-formed.

25 type and contents are strings. Returns a RIFF chunk as a string (26).
26 type and contents are strings (25). len returns an int. putint returns

a string (29).

27 n is an int. Returns a 4-byte string (29).
28 n is an int (27) ⇒ a, b, c , and d are integers.
29 a, b, c , and d are integers (28).

30

31 data is a string.
32 self.data is a string. self.pos is an int.

33 length is an int. The caller will
not read past the end of data .

Returns a string of length bytes (35).
34 self.pos is an int (32).
35 self.pos - length is nonnegative (34). self.data is a string (32).

self.pos is no larger than the length of self.data (33).

6. Pvote 43

6.2.5 Audio.py

1 import pygame
2 AUDIO_DONE = pygame.USEREVENT

3 class Audio:
4 def __init__(self, audio):
5 rate = audio.sample_rate
6 pygame.mixer.init(rate, -16, 0)
7 self.clips = [make_sound(rate, clip.samples) for clip in audio.clips]
8 [self.queue, self.playing] = [[], 0]

9 def play(self, clip_i):
10 self.queue.append(clip_i)
11 if not self.playing:
12 self.next()

13 def next(self):
14 self.playing = len(self.queue)
15 if len(self.queue):
16 self.clips[self.queue.pop(0)].play().set_endevent(AUDIO_DONE)

17 def stop(self):
18 self.queue = []
19 pygame.mixer.stop()

20 def make_sound(rate, data):
21 [comp_channels, sample_size] = ["\x01\x00\x01\x00", "\x02\x00\x10\x00"]
22 fmt = comp_channels + putint(rate) + putint(rate*2) + sample_size
23 file = chunk("RIFF", "WAVE" + chunk("fmt ", fmt) + chunk("data", data))
24 return pygame.mixer.Sound(Buffer(file))

25 def chunk(type, contents):
26 return type + putint(len(contents)) + contents

27 def putint(n):
28 [a, b, c, d] = [n/16777216, n/65536, n/256, n]
29 return chr(d % 256) + chr(c % 256) + chr(b % 256) + chr(a % 256)

30 class Buffer:
31 def __init__(self, data):
32 [self.data, self.pos] = [data, 0]

33 def read(self, length):
34 self.pos = self.pos + length
35 return self.data[self.pos - length:self.pos]

INVARIANTS In an initialized Video.Video object:
INV1. self.surface is a Surface (7).
INV2. self.layouts is a list of Layout (8).
INV3. self.screens is a list of Pygame Image objects the same length as video.layouts (9).
INV4. self.sprites is a list of Pygame Image objects the same length as video.sprites (9).
INV5. self.layout is a Layout (13).

ASSUMPTIONS REASONS FOR VALIDITY POSTCONDITIONS
1 pygame is bound to the Pygame module.

2 im is a Ballot.Image . Returns a Pygame Image .
3 im is a Ballot.Image (2). im.pixels has length im.width ×

im.height × 3 (verifier:69). im.width and im.height are nonzero
(verifier:69).

pygame.image.fromstring returns a
Pygame Image .

4

5 video is a Ballot.Video .
6 video is a Ballot.Video (6). size is a list of two ints (Ballot:102, Ballot:103).
7 N! if size is not accepted as a valid resolution. INV1.
8 INV2.
9 video.layouts is a list of Layout (Ballot:104) ⇒ layout.screen is a

Ballot.Image (Ballot:108).
INV3.

10 video.sprites is a list of Ballot.Image (Ballot:105). INV4.
11

12 layout_i is a valid layout index. self.layout is the referenced Layout and
its screen is displayed.

13 layout_i is a valid layout index (12).
14 layout_i is the valid index of a Pygame Image in self.screens

(INV3). The Image has size equal to the screen resolution (verifier:64).

15 sprite_i is a valid sprite index.
slot_i is a valid slot index in
the current layout.

The sprite is pasted into the slot.
16 slot_i is a valid slot index (15). slot is a Rect (Ballot:110).
17 sprite_i is the valid index of a Pygame Image in self.sprites

(INV4). The pasted sprite fits within screen bounds (verifier:66–67).

18 x and y are ints. Returns the index of the current layout’s first
target containing (x , y), or None (22).

19 self.layout.targets is a list (INV5). self.layout.targets is a list of Target
(INV5) ⇒ i is a valid target index and
target is a Target .

20

21

22 i is returned if the target contains (x , y).

6. Pvote 44

6.2.6 Video.py

1 import pygame

2 def make_image(im):
3 return pygame.image.fromstring(im.pixels, (im.width, im.height), "RGB")

4 class Video:
5 def __init__(self, video):
6 size = [video.width, video.height]
7 self.surface = pygame.display.set_mode(size, pygame.FULLSCREEN)
8 self.layouts = video.layouts
9 self.screens = [make_image(layout.screen) for layout in video.layouts]

10 self.sprites = [make_image(sprite) for sprite in video.sprites]
11 self.goto(0)

12 def goto(self, layout_i):

13 self.layout = self.layouts[layout_i]
14 self.surface.blit(self.screens[layout_i], [0, 0])

15 def paste(self, sprite_i, slot_i):
16 slot = self.layout.slots[slot_i]
17 self.surface.blit(self.sprites[sprite_i], [slot.left, slot.top])

18 def locate(self, x, y):

19 for [i, target] in enumerate(self.layout.targets):
20 if target.left <= x and x < target.left + target.width:
21 if target.top <= y and y < target.top + target.height:
22 return i

INVARIANTS In initialized Printer objects:
INV1. self.text is a Ballot.Text (3).

ASSUMPTIONS REASONS FOR VALIDITY POSTCONDITIONS
1

2 text is a Text .
3 INV1.

4 selections is a list of
length(model.groups) lists,
where each list contains only
valid option indices for each
group.

The selections are printed out.

5 selections is a list of lists (4). group_i is a valid group index and
options is a list of valid option indices in
that group (4).

6

7 group_i is a valid index into self.text.groups (5, INV1, verifier:5). group is a TextGroup (Ballot:87).
8 line is a string with length at least 55 (8, 9, 10).
9

10

11 group.writein is an int (7, Ballot:91).
12 options is a list (5). option is a valid option index for group

group_i (4).13 option is a valid index into group.options (12, verifier:56).
group.options is a list of strings (Ballot:92). line is a string (8, 10).14

15

16 options is a list (5). option is a valid option index for group
group_i (4).17 option is a valid index into group.options (12, verifier:56).

group.options is a list of strings (Ballot:92). line is a string (8, 10, 18).18

19

20

6. Pvote 45

6.2.7 Printer.py

1 class Printer:
2 def __init__(self, text):
3 self.text = text

4 def write(self, selections):

5 for [group_i, options] in enumerate(selections):

6 if len(options):
7 group = self.text.groups[group_i]
8 line = group.name + ":"
9 while len(line) < 55:

10 line = line + " "
11 if group.writein:
12 for option in options:
13 line = line + group.options[option]
14 print line
15 else:
16 for option in options:
17 print line + group.options[option]
18 line = " "*55
19 print
20 print "\f"

7. Correctness claims 46

Chapter 7

Correctness claims

7.1 No negative integers

A negative integer literal occurs only once in Pvote: Audio.py, line 6, as a constant
supplied to pygame.mixer.init .

The unary negation operator is never used.
The binary subtraction operator is used exactly twice in Pvote:

• length is subtracted from self.pos (Audio:35), which the preceding line
ensures is greater than or equal to length .

• 1 is subtracted from group.option_clips (verifier:42), which the
preceding line ensures is greater than or equal to 1.

Therefore, no computations ever result in negative numbers and no variables
ever take on negative values.

7.2 Navigator starts on page 0 in state 0

Initialization of the Navigator always calls self.goto(0, 0) (Navigator:9). In the
goto method, page_i is zero (not None) and self.page_i is None (which can-
not equal an integer), so it proceeds to set self.page_i and self.state_i to 0,
and set self.page and self.state to model.pages[0] and its states[0]
respectively.

Therefore, the navigator always starts on page 0 in state 0.

7.3 Ballot is committed on the last page

Only one Printer is ever instantiated (pvote:8). This printer is immediately passed
to navigator and never referenced again in pvote.py. The Navigator assigns
the incoming printer to self.printer , which is only ever referenced once
(Navigator:15). This line can only be executed when page_i + 1 is equal to
len(self.model.pages) , that is, on the last page.

Also, there is only one assignment to self.page anywhere in the Navigator
(Navigator:16). Thus, any transition to the last page must call printer.write .

Therefore, the Navigator always commits the ballot, and only commits the
ballot, when it transitions to the last page.

7. Correctness claims 47

7.4 Overvoting is impossible

There is only one place where options are added to the current selection
(Navigator:83).

The immediately preceding line ensures that the group is not full (the number
of selections is less than max_sels) at that point.

Therefore, the number of selections in any group cannot exceed max_sels for
that group.

7.5 Contest options cannot be selected twice

There is only one place where options are added to the current selection (Naviga-
tor:83). This can only be reached with a step.op equal to OP_ADDor OP_APPEND.
In the case of OP_ADD, this line cannot be reached if the option to be added is
already selected.

Therefore, the same option cannot appear twice in a group’s selection list unless
OP_APPENDis used. If the ballot definition is examined, it can be confirmed that
OP_APPENDis used only in write-in groups but never in contest groups.

7.6 Summary of responsibilities established

R1. Not abort during a voting session.
The annotations in the source code identify all the possible places where a

runtime error can occur. These appear in the verifier and in the initialization
routines for the audio driver and video driver, all of which execute on startup
before the voting session begins. After these routines have successfully completed
executing, it has been established (mainly by the verifier) that runtime error cannot
occur at a later point.

R2. Remain responsive during a voting session.
The only two looping constructs in Pthin are while and for .
There are only two occurrences of while in Pvote:

• The main event loop runs forever (pvote:10). But this does not cause
unresponsiveness, since each time the loop executes it is responding to an
event.

• while len(line) < 55 runs until a string reaches 55 characters
(Printer:9). Each iteration of the loop adds a space to the string and does
nothing else, so this loop executes at most 55 times.

In the code that runs after a voting session has started (i. e. not including the
ballot loader, verifier, audio initialization, or video initialization) there are the
following uses of for loops:

• To update the display, the navigator iterates over the option areas
(Navigator:23), performing one paste per option area.

• To update the display, the navigator iterates over the counter areas
(Navigator:29), performing one paste per counter area.

7. Correctness claims 48

• To update this display, the navigator iterates over the review areas
(Navigator:33), calling self.review for each one.

• The review method in Navigator iterates up to the maximum number of
selections in the group, performing at most one paste and making at most
one recursive call to self.review each time.

• The recursive call to review passes a write-in group as group_i . Since a
write-in group cannot have any options that themselves have write-in groups
(verifier:46), recursion cannot proceed more than one level deep.

• The lists of bindings in the current state and page are scanned for a match to
a keypress (Navigator:49) or a target touch (Navigator:53).

• The navigator iterates of a list of conditions to test all the conditions
(Navigator:57).

• The navigator iterates over a list of steps to execute the steps (Navigator:70).
• The navigator iterates over a list of segments to play audio (Navigator:95), over

a list of selections to play the audio for lists of options (Navigator:106) or for
write-in options (Navigator:116). The audio is queued immediately without
waiting for it to play.

• The printer iterates over groups to print their selections (Printer:5).
• The printer iterates over selected options to print contest options (Printer:12)

or write-in characters (Printer:16).
• The video driver iterates over the current list of targets to determine whether

the touched point falls within a target (Video:19).

The recursive call in the review method is the only recursive call. The call
graph otherwise contains no cycles.

Therefore, to the extent permitted by the size of lists in the ballot definition,
Pvote always responds to an event within a small and bounded amount of time.

R3. Become inert after a ballot is committed.
As established in Section 7.3, the ballot is only committed upon arrival

at the last page. When this happens, the navigator sets self.page_i to
len(self.model.pages) - 1 (Navigator:14–16). Thereafter, the page and
state can never be changed again, because these changes can only happen
(Navigator:16–17) if self.page_i != len(self.model.pages) - 1 .

Thus, the ballot can never be committed more than once. To ensure that
Pvote becomes totally inert, one could examine the ballot definition to see that
there are no bindings defined for the last page. As the only incoming messages
to the navigator are press (pvote:14), touch (pvote:19), and timeout (pvote:23),
eliminating bindings would guarantee that only timeout would ever get called
after that point. The timeout method can only play audio and call goto ,
which would not cause a page or state transition because self.page_i ==
len(self.model.pages) - 1 .

R4. Display a completion screen when and only when a ballot is committed, and
continue to display this screen until the next session begins.

As established in Section 7.3, the ballot is committed upon and only upon
arrival at the last page. The last page’s screen is the completion screen. Since no

7. Correctness claims 49

more transitions can happen after the last page is reached, this screen remains on
the display until Pvote is restarted.

R5. Exhibit the same deterministic behaviour in all voting sessions that use the
same ballot definition.

By design, Pvote restarts for each voting session. It does not access the clock
or any sources of randomness, so its behaviour is deterministic except for any
non-determinism introduced by the incoming event stream. The event stream
interleaves timers with user input, so it is sensitive to race conditions, but, given
the same event stream and ballot definition, Pvote will always exhibit the same
behaviour.

R6. Present instructions, contests, and options as specified in the ballot
definition.

The instructions, contests, and options are prerendered images embedded in
the ballot definition. Thus, as long as the text and other information in the images
is correct, it will be displayed correctly.

R7. Navigate among instructions, contests, and options as specified in the ballot
definition.

Navigation occurs only by the goto method, which is called whenever a
binding is invoked (Navigator:74) and whenever a timeout is received (Navigator:92).
As long as the destination page and state are specified correctly in the ballot
definition, the transition will occur to the correct page and state (Navigator:13–17).

R8. Select and deselect options according to user actions as specified in the ballot
definition.

Selection and deselection occurs entirely within the execute method, which
can only be called in response to the invocation of a binding (Navigator:71), and a
binding can only be invoked in response to a user action (Navigator:51, Navigator:55).
If the selection steps in bindings are specified correctly in the ballot definition, then
the correct selection or deselection operations will take place (Navigator:77–89).

R9. Prevent overvotes.
This is established in Section 7.4.

R10. Correctly indicate whether options are selected when the ballot definition
calls for such indication.
R11. Correctly indicate how many options are selected when the ballot definition
calls for such indication.
R12. Correctly indicate which options are selected when the ballot definition
calls for such indication.

The navigator calls its own update method every time any binding is invoked
(Navigator:75) or a timeout is received (Navigator:93). The update method always
redraws everything on the screen. It first pastes the current layout’s full-screen
image (Navigator:20). Then it pastes the state’s sprite (Navigator:21).

The indication of whether options are selected is determined by the flag
unselected (Navigator:24), which selects between the selected and unselected

7. Correctness claims 50

sprites for each option area. As long as the option area points to the correct option
and the option points to the correct sprite_i , this will be displayed correctly.

The indication of how many options are selected is determined by the count
variable (Navigator:30), which is added to a counter area’s sprite_i to select the
sprite to display. As long as the counter area points to the correct group and sprite
index, this will be displayed correctly.

The indication of which options are selected is done by the review method.
This method pastes an option sprite in only one place (Navigator:41) and a cursor
sprite in one place (Navigator:45). The option sprite is option.sprite_i , the
selected sprite for an option, and the option is taken directly from the selection
list (Navigator:40). So it cannot display any unselected options. On the other hand,
the paste operation is executed once for every option in the selection list, since the
number of selections cannot exceed max_sels and i takes on every value from 0
to max_sels - 1 .

R13. Commit the selections the voter made.
For this we must establish three things:

1. Selection and deselection of options indeed occurs correctly according to user
actions. This is argued for R9.

2. Ballot commitment occurs when intended. To ensure this we can examine
the ballot definition to see that keys and targets that cause transitions to
the last page are clearly identified to the voter, and that there is adequate
confirmation before a key or target that goes to the last page becomes
available.

3. The printed selections are accurate. Printing occurs in the write method
(Printer:5–18). Every group with a nonzero number of selected options causes
the main clause to be executed (Printer:7–18). For a write-in group, the options
are printed on the same line (Printer:13). For a contest group, the options are
printed on separate lines (Printer:17).

A. Glossary 51

Appendix A

Glossary

ballot style: A combination of contests and options (for a particular set of voters).
binding: A triple of stimulus, condition, and response.
committed: Of a ballot, for the selection of votes to be complete. For a DRE, a ballot

is committed when it is recorded. For a ballot printing or marking device, a
ballot is committed when it is printed.

condition: A logical predicate concerning the current selection state.
contest: A race or a proposition.
contest group: A group representing a contest on the ballot, where the options are

candidates or referendum choices.
empty: Of a group, contest, or write-in, having no options selected.
full: Of a group, contest, or write-in, having the maximum options selected.
group: A set of options that can be selected (see contest group and write-in group).
invoke: Of a binding, to carry out the response it specifies.
match: Of a binding, for its stimulus to match the user input actually received.
operative: Of a binding, to match user input and have its condition be satisfied.
option: A choice in a group (a candidate in a race for office, one of the choices for

a proposition, or a character that can be entered for a write-in).
overvote: Selecting more than the maximum allowed number of selections in a

particular contest.
response: A system behaviour in response to user input (e. g. changing a selection,

navigating to another page, or playing audio).
selection: An option that is currently selected.
selection state: The list of options that are selected in each group.
stimulus: An instance of user input (e. g. a keypress or a screen touch).
undervote: Selecting fewer than the maximum allowed number of selections in a

particular contest.
write-in group: A group representing the text written into a single write-in option,

where the options are characters.
write-in option: An option that allows a candidate’s name to be written in.
voting session: The period from when a voter starts using a particular voting

machine until a ballot is committed or the voter abandons the machine.

B. Deployment example 52

Appendix B

Deployment example

To evaluate Pvote, it may help to have in mind some context in which it will be
used. Here is just one example of a possible deployment scenario for an electronic
ballot printer based on Pvote.

B.1 Before election day

The ballot definition files are prepared and widely published, along with their
hashes, before election day.

B.2 Election day before polls open

The polling place is divided into three areas: the public area, where anyone can
stand, the voting area, which voters are permitted to enter after they have been
authorized to vote by pollworkers, and the private area, which is accessible to
pollworkers only.

The voting area contains any number of voting stations. Each voting station has
a touchscreen, a pair of headphones, a keypad, and a printer. There is a shield or
curtain around the station to protect the voter’s privacy. The voting stations are
stateless.

The private area contains a ballot scanner and a number of bins for flash cards
(one bin for each ballot style to be used at that polling place). Before opening the
polls, the pollworkers use a flash station to prepare some flash cards for each ballot
style. The flash station can be an ordinary PC. For each ballot style, a pollworker
carries out the following steps:

1. Load the ballot definition file onto the flash station. The flash station displays
the hash of the file.

2. Verify the computed hash against the published hash.
3. Insert flash cards one by one. The flash station erases each card and copies

the file onto the card.
4. Label each flash card according to its ballot style.
5. Deposit each flash card in the bin for its ballot style.

B. Deployment example 53

The pollworkers can then shut down the flash station, or leave it set up in
case they want to be able to prepare flash cards on the fly with other ballot styles
throughout the day (e. g. for the occasional voter at the wrong polling place). After
the flash cards are prepared, the polling place is opened.

B.3 Election day with polls open

The voting procedure for each voter is as follows:

1. The voter lines up to be authorized to vote.
2. After checking that the voter is authorized and determining which ballot style

the voter should get (which might depend on the voter’s party affiliation or
address), the pollworker takes a flash card from the appropriate bin.

3. The pollworker proceeds with the voter to any available voting station and
inserts the card. The pollworker inserts a key into the station and turns it,
which aborts and restarts Pvote. Pvote loads the ballot definition from the
card on startup. Once the initial screen appears, the pollworker removes the
card, walks away, and returns the card to its bin.

4. The voter privately interacts with Pvote to make selections on the ballot.
When the final screen is reached, the voter’s selections are printed out on
a paper ballot.

5. The voter verifies the paper ballot.
6. The voter carries the paper ballot (covered in a privacy folder) to the ballot

scanner and places it in the scanner. The scanner records the actual scanned
image of the paper ballot.

B.4 Election day after polls close

The counts reported by the ballot scanner are posted locally at each polling place.
Each polling place posts its counts on a public website.

Each polling place also posts encrypted files containing the scanned images of
its paper ballots on the public website. An openly chosen random sample of the
polling places, as well as any polling places with a sufficiently narrow margin of
victory, post their scanned images of paper ballots without encryption. Members
of the public can run their own OCR software to verify the counts.

After 3 years, the encryption keys are published so the entire election can be
verified by the public.

C. WAV audio file format 54

Appendix C

WAV audio file format

The essential elements of the Microsoft WAV file format are as follows:

• All integers are represented in little-endian order.
• A chunk is a block of data preceded by an 8-byte header. The first 4 bytes of

the header are a chunk type identifier, and the next 4 bytes give the length of
the data block, not including the header.

• A WAV file consists of a chunk of type "RIFF" that contains the 4-byte string
"WAVE" followed by other chunks.

• The minimal two required chunks are a "fmt " chunk and a "data" chunk.
• The "fmt " chunk contains this 16-byte structure:

Size Contents
2 bytes compression type (1 for none)
2 bytes number of channels (1 for mono, 2 for stereo)
4 bytes number of samples per second
4 bytes number of bytes per second
2 bytes number of bytes per sample × number of channels
2 bytes number of bits per sample

• The "data" chunk contains the audio sample data. For 16-bit samples, each
sample is a signed little-endian 16-bit value.

