
Extending prerendered-interface voting software
to support accessibility and other ballot features

Ka-Ping Yee
University of California, Berkeley

ping@zesty.ca

Abstract

This work builds on the prerendered user interface
(PRUI) approach for high-assurance voting software
with a new design that supports synchronized audio
and visual output, as well as concurrent input from
a touchscreen and an alternate input device. This
new design offers access for voters with a range of
disabilities while retaining the benefits of PRUI voting
systems: the user interface can be designed and audited
independently of the system software, and the software
needing verification is relatively small and simple. This
paper discusses the challenges of supporting accessibility
in this architecture, explains how these challenges
were addressed, and describes the resulting design. To
demonstrate the feasibility of this approach and establish
a point of reference for the simplicity of voting machine
software, this design has been implemented as a program
called Pvote, in 460 lines of Python.

1 Introduction

Electronic voting machines offer the promise of many
advantages in the user interface offered to voters: ballots
can be presented in more languages; the user interface
can help voters avoid or correct mistakes; alternate
input and output devices can enable voters with disabil-
ities to vote independently. However, there have been
severe drawbacks with electronic voting to date: lack of
transparency, poor reliability, and vulnerability to attack.

assurance = disclosure + review

Legislative efforts are underway to require disclosure
of the software code in electronic voting machines.
However, disclosure does not in itself assure correctness
of the voting system or the absence of malicious code;
the disclosed code must also be reviewed.

Software security review, whether formal or informal,
is notoriously difficult and labour-intensive. The size
and complexity of the software is a major barrier to full
confidence in voting systems. For example, the source
code for the Diebold AccuVote TS machine consists
of over 31,000 lines of C++ code and resource scripts
(ignoring comments and blank lines). A prior paper [20]
proposed an approach to the software complexity prob-
lem consisting of three complementary measures:

• Publish the ballot definition supplied to the voting
machine, so that the software involved in generating
the ballot definition does not need to be verified.

• Publish the anonymous votes recorded by the voting
machine, so that the software involved in collecting
and tallying the results does not need to be verified.

• Minimize the complexity of the voting machine
software that does need to be verified by precomput-
ing as much information as possible about the user
interface and including it in the ballot definition.

In the prerendered user interface (PRUI) paradigm, the
ballot definition is a platform-independent specification
of the voting machine’s user interface; the software
running on the voting machine is a virtual machine (VM)
that presents information to the user as specified by
the ballot definition, reacts to user input, and records
the user’s selections. With a sufficiently small and
simple VM, code review becomes tractable, and buggy or
malicious code in the VM is less likely to go unnoticed.
Making software review less time-consuming allows
higher assurance to be attained through more thorough
review or multiple independent reviews.

Publishing the ballot definition separately also yields
other benefits: the voting user interface can be designed
and verified independently of the voting machine soft-
ware, the user interface design can be updated without
requiring recertification of the software, and the user
interface design can be tested by anyone on an ordinary

personal computer, not just on the specialized voting
equipment that will be used on election day.

While the original PRUI voting prototype [20]
achieved significant strides in simplifying voting
machine software and making it more amenable to
verification, it supported only a touchscreen for input and
output. Such an interface can only be used conveniently
by voters who can see, who can read, and who have
sufficient fine motor ability to accurately select items on
the screen. But a major motivator for electronic voting
machines in the first place is to support the accessibility
requirements dictated by HAVA. By failing to support
more accessible voting interfaces, the previous work left
open the question of just how much software complexity
is necessary to fulfill these machines’ ostensible reason
for existing. The purpose of the current work is to answer
that question and to demonstrate that better verifiability
can be achieved without sacrificing accessibility and
useful functionality.

2 Goals

The software system described here is intended to
serve as the core user interface component for a voting
machine. It is designed so it could be used in many kinds
of voting machines, such as electronic ballot markers
or printers, DRE (direct recording electronic) machines
with or without paper trails, or machines that support
end-to-end cryptographic verification schemes. Every
electronic voting system needs a reliable and auditable
way to present the ballot to the voter, and this work is
aimed at addressing that need.

In the PRUI paradigm, the ballot definition is central to
the system design. Although the ballot definition format
has more the flavour of a data structure than a grammar,
nonetheless it is a programming language — a domain-
specific “little language” [2] in which ballot definitions
are the programs and the VM is the interpreter. The chal-
lenge is to design a language restrictive enough to enable
meaningful security guarantees, yet flexible enough to
support all needed functionality. The following sections
set out these security and functionality goals.

2.1 Security

The essential task of a voting system is to obtain a fair
and accurate measurement of the will of the electorate
with respect to a number of multiple-choice questions.
What it means for a voting system to be secure is that the
system can be relied upon to produce the correct results
in the face of determined attempts to subvert the out-
come. Thus, security is closely tied to correctness; one
could say that security is “correctness despite threats.”

One of the most serious threats that is currently poorly
addressed in voting systems is the insider threat from
software developers. Intentionally placed bugs or back-
doors are hard to detect even when software is carefully
audited [5]. The persistent failure of the federal testing
process to detect major security flaws [6] and the con-
tinuing revelations of security vulnerabilities in certified
voting systems [15, 16, 3, 4, 1] suggest that voting
software has not been audited anywhere near enough to
defend against this threat.

Reducing the complexity of voting system software to
facilitate thorough review directly addresses the insider
threat. For the purposes of this work, correctness of the
voting system consists of the following:

• The voting system should not crash or become
unresponsive during a voting session.

• The behaviour of the system should be determined
entirely by the ballot definition and the user’s
actions. In particular:

– The behaviour in each voter’s voting session
should be independent of previous sessions,
for the sake of fairness and voter privacy.

– The behaviour should be exactly the same
during an actual election as during testing.

• Each voter should only be able to cast one ballot.
• The ballot should be cast when and only when so

requested by the voter.
• Overvoting should be prevented.
• The instructions, contests, and options on the ballot

should be presented correctly.
• The feedback that a voter receives when making

and reviewing selections should correctly match the
selections that the voter made.

• The selections that are recorded should correctly
match the selections that the voter made.

Some of these can be established just by correct
implementation of the VM (for example, deterministic
behaviour); others will also require correctness of the
ballot definition. The security goal is that it must be
possible (and preferably easy) for reviewers to verify to
their satisfaction that the system guarantees all of these
correctness properties, without relying on faith in the
honesty or competence of the system’s developers.

2.2 Accessibility
Initially, this work was aimed at creating a special
“accessible version” of the system just for blind users,
with a keypad for input, an audio-only interface, and no
visual display. Before long, however, it became apparent
that a universal design approach would be more fruitful.

Universal design [14] is the practice of designing
artifacts that are flexible enough to support a wide range
of users with and without disabilities, instead of separate
artifacts or assistive devices for specific disabilities. A
unified solution avoids stigmatizing people with disabili-
ties, and the increased flexibility often yields benefits for
all users. In this case, the unified solution is a single user
interface with synchronized audio and video, rather than
a visual interface for sighted voters and a separate audio-
only interface for blind voters. The same information
is presented concurrently in audio and video; user input
always yields both audio and visual feedback.

The present work takes a universal design approach to
input devices as well as output devices. The software
design presented here is intended to support voting hard-
ware with both a touchscreen for input and an alternate
device that can transmit keypresses. The alternate device
could be a regular keyboard, a numeric keypad, a set
of hardware buttons designed for voting, a sip-and-puff
device, or other accessible input device. The voter can
decide whether to use the touchscreen or the alternate
input device, and can mix them freely.

Noel Runyan, an expert on accessible technologies,
recommended synchronized audio and video in discus-
sions with the author during the early stages of this work.
His recent report on voting interfaces [12] also makes
this recommendation. Although not all of the electronic
voting machines currently in use support synchronized
audio and video, such a requirement is present both in the
2005 Voluntary Voting System Guidelines (VVSG) [17]
(item 3.2.2.1f) and in a recent draft of the next generation
of these guidelines [18] (item 3.3.2f).

A system with multimodal input and output is helpful
not only for blind voters but also voters with low vision,
voters who are illiterate, voters with cognitive disabili-
ties, and voters with physical impairments that make it
hard to use a touchscreen, as well as voters with multiple
disabilities. Voters without disabilities could also benefit
from audio confirmation of their choices [13].

2.3 Functionality

Voting systems should be highly usable by voters of
all kinds, and their usability should be evaluated and
improved through user testing. However, user testing
of specific ballot designs is outside the scope of the
present work; the aim here is to design not a particular
ballot, or even a particular style of ballot, but a ballot
definition language — one flexible enough that usability
and accessibility experts can use it to create better and
better ballots as our understanding of voting human
factors improves. The PRUI paradigm opens up the
process so ballot design can be done by expert ballot
designers, not just voting system programmers.

If the ballot definition language is rich enough to
replicate what existing voting machines do, then the
resulting voting system will be capable of being at least
as usable as today’s voting systems. We can be assured of
not having lost ground in usability, while throwing open
the door to future ballot designs with better usability.
Thus, the goals for the new ballot definition language are
described in terms of standards of functionality:

• It should be possible, with an appropriate ballot
definition and corresponding hardware, to produce
a similar or better user experience compared to
existing electronic voting systems, including those
that support audio or synchronized audio and video.

• It should be possible to define a reasonably usable
synchronized audio and video interface correspond-
ing to a real ballot.

• It should be possible to create a single ballot defini-
tion that makes sense for a voter who can only hear
the audio and also makes sense for a voter who can
only see the visual display.

• It should be possible to implement most of the
voting features needed for real elections, such
as multiple-selection contests, write-ins, straight-
party voting, eligibility for contests dependent
on selections in other contests, restrictions on
cross-endorsed candidates, and ranked voting.

3 Guiding principles

When one designs a programming language to anticipate
and support many kinds of functionality, such as this
ballot definition language, it is easy to get lost in a thicket
of decisions and possibilities. The design experience led
to the discovery of some guiding principles that helped
to keep decisions well grounded. These principles would
probably also be useful when taking the PRUI approach
to high assurance in other domains as well as voting.
The next few sections outline these principles, in order
of decreasing priority.

3.1 Work from a concrete use case
It was helpful to examine a specific paper ballot (in
this case, a sample ballot from the November 2006
election used in Contra Costa County, ballot style 167)
and consider what would constitute an acceptable corre-
sponding electronic ballot. Any faithful translation of
this ballot into electronic form needs to present all of
the information on the paper ballot, enable a voter to
navigate through the ballot, keep the voter oriented as to
their position in the ballot, allow access to all available
options, and keep the voter aware of the current state of
their selections. The electronic ballot must achieve all of

these things for voters using only the visual display as
well as voters using only the audio.

The paper ballot turned out to be invaluable for driving
the design process. It was often a good idea to refer
back to the paper ballot to work out exactly what should
appear on the screen, what audio should be played, and
the appropriate responses to all possible user inputs.
The exercise of creating a specific ballot definition file
revealed which features had to be supported by the ballot
definition language and when it was necessary to add
more capabilities to the VM.

3.2 Minimize VM complexity
The key goal of this work is to facilitate the review of
the software that has to be verified — in this case, the
VM. In general, the smaller and simpler the VM, the
easier it is to verify. When faced with a design decision,
it was helpful to keep returning to this goal and choose
whichever option yielded a smaller or simpler VM. This
principle was secondary only to including the necessary
functionality to implement a real ballot, as described in
the preceding section.

One consequence of this principle is that it is more
important to avoid redundancy in the VM code than
to avoid redundancy in the ballot data. For example,
although the ballot definition file is certain to contain
images that are highly compressible, they are not com-
pressed, because that would require additional decom-
pression code in the VM. Security reviews are expensive,
but storage is cheap.

3.3 Maximize UI design flexibility
Other things being equal, it is better for the ballot defini-
tion language to allow a wider range of user interfaces
to be specified. Giving more expressive power to the
ballot definition makes the VM less likely to have to
change to support new user interface designs. Since each
change invalidates previous software reviews, future-
proofing the VM yields real security benefits. Thus,
when considering design options that do not significantly
differ in the complexity of the VM or in the ability of
the VM to enforce correctness constraints, the preferred
option is the one that leads to a larger space of possible
user interfaces.

One effective way to make the ballot definition lan-
guage more expressive is to embrace orthogonality in
language primitives. Replacing specialized high-level
constructs with a combination of more general-purpose
primitives can be doubly beneficial: the increased gener-
ality enables more possibilities to be expressed, while the
increased uniformity makes the implementation in the
VM more concise. For example, the new ballot definition

language has no special cases to distinguish, say, review
screens or write-in screens from other kinds of screens;
all of these are just pages, and information can be freely
arranged on each page.

The tradeoff is that using lower-level constructs some-
times makes the ballot definition more tedious to review.
Switching to more general, lower-level constructs tends
to be advantageous if it gives the UI designer more
flexibility without creating new ways of violating cor-
rectness, and if the additional tediousness of reviewing
ballot definitions can be mitigated by automated tools for
reviewers.

3.4 Maximize UI review efficiency

In the PRUI paradigm, assurance is obtained through
human review of the user interface specification (which,
in this application, is the ballot definition). No design can
eliminate the necessity of human involvement in evalu-
ating the truthfulness of the user interface — whether a
visual display or a spoken message is misleading is a
judgement that can only be made by a human reviewer.

However, design choices can affect the level of confi-
dence with which a human reviewer’s observations can
be generalized across all of the situations a user might
encounter in using the voting interface. A well-designed
ballot definition language can give human reviewers the
leverage to draw broad conclusions from manageable
amounts of review and testing.

In any system with even a modest number of variables,
the number of states that the system can be in is probably
so large that a human reviewer cannot observe the user
interface in every possible state. But the ballot definition
language can defend the human reviewer from this com-
binatorial explosion of states. The language can facilitate
the creation of ballot definitions for which observing a
limited number of states (for example, walking through
the ballot making selections as in typical pre-election
testing) is sufficient to extrapolate the UI presentation of
all the states the system could come to be in.

For example, candidate’s names are spoken in the
audio interface in several contexts. When the voter
selects Candidate X, there should be an audio confirma-
tion message such as “Candidate X has been selected.”
When the voter is reviewing selections, the voter should
hear a message such as “For President, your current
selection is Candidate X.”

Suppose that these two messages were each indepen-
dently recorded as a single sound clip. In order to verify
the correctness of the audio, a human reviewer would
have to listen to each pair of messages to ensure that the
candidate sounds the same in each pair — it would not
do for the selection message to say “Candidate X” but
for the review message to say “Candidate Y.” In such

a scheme, the number of messages to review would be
roughly the number of candidates times the number of
contexts in which they appear.

The reviewer’s work can be made substantially easier
by breaking up the messages into parts. The candidate’s
name can be recorded and stored once, then used for all
the messages that have to do with that candidate. The
remaining part (in our example, “has been selected”) can
be recorded once and used for all the selection messages
across all candidates. The consistent reuse of audio
clips can be checked mechanically, leaving the human
reviewer with fewer audio clips to review (roughly the
number of candidates plus the number of contexts).

4 Evolution of the design

The following sections describe the steps in thinking and
the changes that were made to get from the original
design [20] (referred to hereafter as the “touchscreen
design” since it only supported a touchscreen for both
input and output) to the new design (referred to hereafter
as the “multimodal design” since it supports multiple
input modes and multiple output modes). Many of these
changes were driven by accessibility concerns, but some
were motivated by other ballot features.

The ballot definition format had to become substan-
tially more complex to support synchronized audio and
video. Figure 1 compares the format of the ballot
definition in the touchscreen design to the new format
in the multimodal design. Only the main part of the
ballot definition, called the ballot model, is shown.
Precise specifications of the old format [20] and the new
format [19] are available in other reports, so this paper
does not go into every detail of these formats.

In the terminology used here, a contest is a race or
a referendum put to the voters and an option is one of
the choices available in a contest. The options in a race
are candidates, whereas the options in a referendum are
typically “yes” and “no.” During voting, the selection
state is the voter’s current set of selections in all the
contests. A contest is said to be empty if none of its
options are selected, and full if the maximum allowed
number of selections is selected. The capacity of a
contest is its maximum allowed number of selections. To
undervote in a contest is to leave the contest less than
full; to overvote in a contest is to exceed its capacity.

4.1 Starting point
In the touchscreen design, the ballot definition specified
a state machine where each state corresponded to a page
with a general appearance and a visual layout. On each
page, particular rectangular regions of the screen were
designated for displaying options, indicating whether

options were selected, and reviewing which options were
currently selected. There was no restriction on how the
options in a contest could be arranged; they could all be
on one page or spread over many pages. Screen touches
triggered transitions between pages or caused options to
be selected or deselected.

Write-ins were handled as a special case in the touch-
screen design. Individual options could be designated as
write-ins; touching them took the user to a special type
of page just for entering write-in text, with screen regions
designated for special actions like appending or erasing
a letter or accepting or cancelling the write-in.

The goal was a system with a superset of this func-
tionality, so the design process sought ways to extend
this touchscreen design into a multimodal design.

4.2 User focus

With respect to voting user interfaces, the visual channel
has two advantages over audio. First, it can convey
textual information at a higher bandwidth: for most
people, reading a printed list of candidates’ names is
faster than listening to them spoken aloud. Second,
a visual image can convey more information at once
without an explicit navigation mechanism: although a
page full of text probably exceeds what a person can
hold in working memory, one can easily select and gather
information of interest by looking at different parts of the
page without needing to explicitly interact with the page.

A consequence of both of these properties is that
audio-only voting interfaces require smaller units of
navigation than video-only voting interfaces. Whereas
an entire page can be visually “current” to the voter,
only a few words can be aurally “current” at any given
moment. For example, a visual interface can present an
entire list of candidates at once but an audio interface
must present the candidates one at a time. Therefore,
a multimodal interface should support the notion of the
user’s focus at two different levels of hierarchy.

The new design adds states within pages to represent
the second level of focus in the ballot definition. Because
audio navigation units are finer-grained, audio informa-
tion is primarily specified at the state level, whereas
visual information is primarily specified at the page level.
All the states that belong to the same page share the same
overall appearance and layout, though they can vary in
appearance. Behaviours in response to user input can be
specified at either level; at the state level they apply to a
single state; at the page level they apply to all the states
in the page.

For example, in a typical ballot layout, a single page
presents a list of candidates, and each state within that
page highlights one of the candidates. The user presses
a button to step through the candidates one at a time. In

ballot model

group

int max_sels
int max_chars
int option_clips

option

int sprite_i
int clip_i
int writein_group_i

page

state

binding

int sprite_i

audio segment

binding

timeout action

int timeout_page_i
int timeout_state_i

audio segment

option area

int group_i
int option_i

counter area

int group_i
int sprite_i

review area

int group_i
int cursor_sprite_i

int timeout_ms

ballot model

contest

int max_sels
int max_chars

page

target

int action
int page_i
int contest_i

option area

int contest_i

write-in option area

int contest_i

review area

int contest_i

write-in page

write-in target

int action

§4.3

§4.4

§4.10

§4.3

§4.2

§4.9

§4.10

touchscreen-only ballot definition format multimodal ballot definition format

binding

int key
int target_i

condition

step

enum op
int group_i
int option_i

audio segment

int next_page_i
int next_state_i

audio segment

condition

enum type
int clip_i
int group_i
int option_i

condition

enum predicate
int group_i
int option_i
bool invert

definition of substructures
(small dotted rectangles)

used in the multimodal format
§4.4

§4.6

§4.7

§4.6

§4.8

§4.8

§4.6

§4.8

§4.4

Figure 1: Side-by-side comparison of the old (touchscreen-only) and new (multimodal) ballot definition formats.
Stacked rectangles represent arrays. The data structures shown in dotted rectangles are expanded on the right. Fields
whose names end with i contain array indices; in particular, sprite i and clip i point into arrays of images and audio
clips in the video and audio sections of the ballot definition, which are not shown here. Most of the changes and
additions in the new format are described in Section 4, and the relevant subsections are marked on the figure.

the state when a particular candidate becomes the focus,
the audio for the candidate’s name is played and the
candidate’s name is highlighted in the list on the screen.
Selecting the currently highlighted candidate is a state-
level behaviour, since the selection operation is different
in each state, whereas moving on to the next contest is a
page-level behaviour.

4.3 Staying oriented
Visual information can be presented passively, whereas
presenting audio information requires continuous activ-
ity. Even an inert display can convey visual information,
whereas silence conveys no audio information at all.

If a user is distracted while viewing static visual infor-
mation, then getting reoriented is just a matter of looking
over the information again. But if a user is distracted
while listening to audio, then getting reoriented requires
that the computer actively replay the audio. Therefore,
an audio interface needs fallback mechanisms to trigger
reorientation. The ballot definition needs to be able to
specify a “where am I?” button that the user can press to
recover context, as well as a way of triggering reorienting
information after a period of inactivity, if the user is lost
and doesn’t know what button to press for help.

The former need, combined with the desire for other
ballot features such as straight-party voting, led to a
generalization in the way the ballot definition specifies
behaviours in response to user input (see Section 4.7).

The latter need motivated the addition of a timeout
parameter to the ballot definition, as well as a timeout
audio sequence and an optional timeout transition for
each state. When there has been no audio playing
and no user input for the timeout period, the timeout
audio sequence is automatically played and the timeout
transition takes place, if any.

The draft human factors section for the next version of
the VVSG [18] includes a requirement (item 3.2.5.1e)
for a “defined and documented inactivity time” after
which the system gives a warning. This new timeout
functionality satisfies that requirement.

4.4 Conveying the selection state
The voting system is like a state machine (at any given
moment, a particular “state” within a particular page is
the current state), but it also keeps track of the set of
current selections in each contest, which we’ll call the
selection state. (The terms “current state” and “selection
state” are similar but refer to two distinct things; the
voting system has only these two pieces of system state.)

In the touchscreen-only design, the selection state was
exposed visually in two ways: an option area displayed a
specified option, which would have one appearance if it

was selected and another if it was not; and a review area
displayed whatever options were selected in a specified
contest.

To provide similar representation of state in audio, the
multimodal design adds audio sequences consisting of
one or more audio segments, where each segment can be
constant or variable. A constant segment always plays
the same audio clip independent of the selection state;
a variable segment selects an audio clip to play as a
function of the current selection state. Constant and
variable segments are concatenated together to give the
effect of filling in blanks in spoken prose, yielding a ver-
bal description of the selection state. Variable segments
can play the name of a specified option, analogous to an
option area; or they can play the list of selected options
in a specified contest, analogous to a review area.

For example, to tell the voter which candidates are
selected for city council, an audio sequence might consist
of two segments: first a constant segment that says “Your
selections for city council are”, then a variable segment
that lists the voter’s selections in the city council contest.

A constant segment is often insufficient to produce
a grammatically natural description. If there is only
one selection, the sentence should begin “Your selection
for city council is”, and if there are no selections, the
audio description should say something like “You have
no selections for city council.” So, a third type of variable
segment was added, which chooses an audio clip to play
based on how many options are selected in a specified
contest. By supplying an appropriate array of audio
clips, a ballot definition can also use this type of variable
segment to tell the voter whether they have undervoted
in a particular contest.

The new design also adds a new type of variable
display area, a counter area, analogous to this new type
of variable audio segment. A counter area selects the
image to display from an array of images, based on the
number of options selected in a specified contest.

4.5 Providing feedback on actions

Not every user action succeeds. For example, the user
should not be allowed to overvote. The touchscreen-
only design enforced this rule, but provided no particular
feedback; an attempt to select an additional candidate
would simply have no effect when the contest is already
full.

In a visual interface this might be considered accept-
able behaviour, as the user can immediately see whether
or not the attempt to select had an effect: either the
candidate’s name takes on a selected appearance, or it
doesn’t. But in an audio interface, there is no such direct
feedback without an audio message describing what just
happened. Therefore, to support audio-only voters, the

ballot definition needs to be able to specify one audio
message when selection succeeds and a different audio
message when selection fails. There may be other
messages as well, depending on the type of action the
user was trying to perform.

In early versions of the multimodal design, each
user action had several audio messages associated with
it. Initially there were just two messages, one for
success and one for failure; eventually this grew into
five messages for each action: one to play if the action
succeeded in selecting an option, one to play if the
action succeeded in deselecting an option, one to play
if the action failed because the contest was empty, one
to play if the action failed because the contest was full,
and one to play if the action had no effect. This tactic
became unwieldy as the number of cases grew, and was
finally discarded in favour of a generalized condition
mechanism (see Section 4.8).

4.6 Generalized bindings
In the touchscreen design, the behaviours triggered by
screen touches were specialized according to the type
of the touched screen region. For example, option areas
were hardcoded in the VM to react to a touch by toggling
whether the associated option was selected, and write-
in option areas were hardcoded to react to a touch by
jumping to an associated write-in page.

This direct binding between screen regions and actions
is inadequate for a multimodal design in several ways.
First, direct binding doesn’t make sense for input from
hardware buttons: there aren’t enough buttons to ded-
icate a button to each option. Second, the multimodal
design has to allow for a “where am I?” button, as men-
tioned in Section 4.3, which could play many different
audio messages depending on the current system state.
Third, text entry in an audio-only interface is a nontrivial
design problem. The touchscreen design could afford
to hardcode text entry behaviour in the obvious way —
a keyboard made of onscreen buttons, where touching
each button types a letter. But there is no single obvious
way to enter text in an audio-only interface. The text
entry method is likely to vary widely depending on the
hardware buttons available, so it should be left up to the
ballot definition to specify.

For all these reasons, the multimodal design increases
the flexibility of input handling by adding a layer of
indirection: a list of bindings between input events and
the actions they trigger.

4.7 Generalized actions
Introducing bindings meant there had to be a new data
structure to represent the action triggered by an input

event. This data structure initially specified a selection
operation (select, toggle, or deselect) to perform on a
single specific option. It was extended once with a list
of contests to clear (to support automatically deselecting
the current selection when making a new selection), and
then extended again with a list of options to select in each
contest (to support straight-party voting).

This data structure was later unified and simplified
into a single list of steps, where each step performs a
selection operation (select an option, deselect an option,
remove the last selected option from a contest, or clear
a contest). This change yielded a VM with less code
but more flexible selection functionality. In the current
design, there is no separate data structure for actions;
the list of steps is embedded in the data structure for a
binding.

4.8 Generalized conditions
The ballot definition needed a way not only to play
different audio messages depending on the outcome of an
action, as mentioned previously in Section 4.5, but also
to perform different actions depending on the selection
state. For example, consider what the voting system
should do when the user touches an option. If the option
is already selected, then one possible effect would be to
deselect the option. If the option is not selected, and
its contest is not full, then the option should become
selected. And if the option is not selected but its contest
is full, then the selection should not change. Each of
these three cases should also have its own corresponding
audio message. This capability was added by attaching to
each binding a list of conditions concerning the selection
state. Each condition can check whether a particular
option is selected, a particular contest is full, or a
particular contest is empty. The binding is triggerable
only if all of its conditions are satisfied.

Conditions also turned out to be useful for construct-
ing variable audio sequences. Prior to the addition
of conditions, there were nine types of variable audio
segments. Then a list of conditions was attached to each
segment; each segment is played or skipped depending
on whether all of its conditions were satisfied. Reusing
conditions in this way increases the flexibility of audio
feedback while simplifying the implementation: with
conditions added, only three types of variable audio
segments are necessary.

4.9 Groups: a dual-use data structure
Substantial economy in code complexity was achieved
by using a single data structure, the group, for two
purposes. In the multimodal design, a group is a
container of selectable options; it can represent a contest

(with options such as candidates) or a write-in entry field
(where the options are the individual characters that can
appear in the entry field). It made sense to combine these
into a single data structure because of their common
functionality:

• In both cases, the current selection for a group is
a list of options (even though a contest selection
has set-like semantics and a write-in selection has
ordered sequence semantics).

• In both cases, user actions add and remove options
to and from the selection (e. g. selecting candidates
in a contest or typing letters into a write-in field).

• Reviewing the state of a group consists of display-
ing the list of selections in order (pasting the candi-
date images or the letter images into a sequence of
equal-sized spaces on the screen) or playing back
audio for the list of selections in order (reading off
the list of selected candidates or speaking the letters
in a write-in field one by one).

4.10 Candidate rotation support
In the touchscreen-only design, every option area was
assumed to represent a distinct option. Thus, each option
area only had to indicate which contest it belonged to;
the number of options in a contest could be determined
by scanning all the pages of the ballot definition and
counting the option areas associated with that contest.

In the multimodal design, information about each
option (such as its associated image and audio clip) is
kept in an option structure under the option’s group. The
option areas refer to these option structures. Bindings
that select options, audio segments that play option
names, and conditions that examine options can either
refer to options directly or refer to option areas, which
themselves refer to options. This extra layer of indirec-
tion yields two kinds of flexibility:

• The same option can be displayed in more than one
place on the ballot.

• Options can be rearranged by rearranging the refer-
ences from option areas to options.

Without the extra layer of indirection, candidate rota-
tion would be difficult to automate reliably because there
would be no distinction between a reference to an option
area and a reference to an option. This distinction
is important because indirect references to options via
option areas should change when options are shuffled,
whereas direct references to options should not change
when options are shuffled. When candidates are rotated,
their screen position and order of audio presentation
should change, but the set of candidates belonging to a
party for a straight-party vote should not change.

This design feature makes it easy to rotate candidates
by a simple manipulation of the ballot file. Rearranging
the references from option areas to options does not
change the option number assigned to each candidate.
Thus, candidate rotation has no effect on the way voter
selections are recorded, which helps to avoid the possi-
bility of confusion in interpreting recorded votes.

One could produce several rotated variants of a ballot
before the election and publish them all; it is straight-
forward to verify that two ballot definition files represent
the same ballot except for reordering of the candidates.
Alternatively, the voting machine could even perform
candidate rotation on the fly for each voter, though the
prototype implementation does not do this.

4.11 Large type and high contrast
A large-type mode and a high-contrast mode can be
helpful for users with visual disabilities. Both the 2005
VVSG [17] (items 3.3.2.1b and c) and the draft new
guidelines [18] (items 3.2.4e and j) require electronic
voting displays to be capable of showing all information
in at least two type sizes, 3.0–4.0 mm and 6.3–9.0 mm,
and to have a high-contrast mode with a contrast ratio
of at least 6:1 (on current voting machines this usually
means a black-and-white mode).

The touchscreen-only design can already accommo-
date these requirements by providing multiple preren-
dered versions of the ballot in a single ballot definition
file, with an initial page on which the voter can select the
desired presentation mode.

This does have the consequence that contests and
options are duplicated in each version of the ballot. In
terms of the ballot definition data structures, the large-
type contest and the normal-type contest for each office
would be distinct contests with distinct options. This
creates the possibility that the electronic record of a
vote would reveal whether the voter selected a large-
type candidate or a normal-type candidate. It is possible
to avoid revealing this distinction with a workaround
that exploits generalized actions: user selection of a
candidate in any display mode automatically selects all
the corresponding variants in the other display modes
(e. g. touching the button for Jane Smith in normal print
also selects Jane Smith in large print, Jane Smith in high
contrast, etc.). Future versions of the ballot definition
format may add features to obviate this workaround.

5 Design

This section describes the current design of the multi-
modal ballot definition format and the VM software that
interprets it. (Readers not interested in the details can
safely skip this section on a first reading.)

Pvote, the present implementation of this design, is
intended for voting machines that are electronic ballot
printers; thus, both the ballot definition and the VM
software contain a component specifically to support
ballot printing. An implementation targeted for other
types of voting machines would substitute a different
component for recording the cast votes, such as the
tamper-evident direct recording mechanism of the prior
PRUI voting prototype [20].

5.1 Ballot definition format

This section gives an overview of the new ballot defini-
tion format. For a detailed specification of the format,
see the Pvote Assurance Document [19].

Just as in the touchscreen-only design, the ballot
definition describes a state machine. Each state transition
is triggered by a user action or by an idle timeout.
Executing a transition can cause options to be selected
or deselected. Audio feedback can be associated with
states and with transitions between states.

The ballot definition contains three main sections:

• Ballot model: structure of the ballot and interaction
flow of the user interface.

• Audio data: sound clips to play over the head-
phones.

• Video data: images to display on the screen, the
locations at which to display them, and locations of
touch-sensitive screen regions.

These three sections are separated so that each one
can be supplied to a distinct module of the VM with
distinct responsibilities. In addition, they can be sepa-
rately updated — for example, one can translate the audio
interface into a different language by recording audio
clips for a new audio data section while leaving the other
sections unchanged.

In Pvote, which is written specifically for a text-
based electronic ballot printer, the ballot definition also
includes a fourth section, the text data, which contains
textual descriptions of the contests and candidates for the
printer to print.

5.1.1 Audio data

The audio data section specifies the sample rate at which
all audio is to be played and provides an array of sound
clips. Other parts of the ballot definition refer to these
clips by supplying indices into this array. The audio clips
are uncompressed and monophonic, and each sample is
a 16-bit signed integer. The clips can contain recordings
of actual speech or of prerendered synthesized speech.

5.1.2 Video data

The video data section specifies the resolution of the
video screen and includes an array of layouts and an
array of sprites. A sprite is an image, smaller than the
size of the entire screen, that will be pasted on the screen
somewhere. A layout consists of a full-screen image,
an array of targets, and an array of slots. A target is a
rectangular region of the screen where a touch will have
an effect; a slot is a rectangular region where a sprite can
be pasted. Image data is stored uncompressed, with 3
bytes per pixel (red, green, and blue colour values).

5.1.3 Ballot model

The ballot model is the main specification of the state
machine. It contains an array of groups and an array of
pages. It also specifies an idle timeout in milliseconds.

Groups and options
A group is a set of choices from which the voter

makes selections. There are two kinds of groups: contest
groups and write-in groups. A contest group represents
a race in which the options are candidates or a referen-
dum question with options such as “yes” and “no”. A
write-in group represents the text entered in a write-
in area within a contest, in which the options are the
characters used to spell out the name of the write-in
candidate. In the array of options within each group,
images and sound clips are specified to represent each
option by providing indices into the arrays of audio
clips and sprites. Within a contest group, an option can
also specify that it is a write-in option and identify the
write-in group containing its write-in text.

Each group specifies its capacity (the maximum num-
ber of selections allowed in the group); for contest
groups this prevents overvotes, and for write-in groups
this limits the length of the entered text. All the write-in
options within a contest must have the same maximum
length for text entry.

Pages and states
The page is the basic unit of visual presentation;

within each page is an array of states. The pages
correspond, one-to-one, to the layouts in the video data.
At any given moment, there is a current page and a
current state. The user interface always begins on page
0 in state 0; when the VM executes a transition to the
last page in the array of pages, the ballot is printed or
cast with the voter’s current selections. In addition to the
array of states, each page contains arrays of option areas,
counter areas, review areas, and bindings.

The states in a page are states in the state machine
of the user interface. Each state specifies a sprite to
be pasted over the main page image while the state is

current. (For example, a page could show a list of several
options, and the states within that page could display a
focus highlight that moves from option to option. Each
state would paste a focus highlight for its option over
the page image.) Each state also has an array of audio
segments to be played upon entering the state, and an
array of its own bindings.

A state can also specify audio segments to be played
upon a timeout and/or an automatic transition to another
state upon a timeout. A timeout occurs when the audio
has stopped playing and there has been no user activity
for the timeout duration specified in the ballot model.

An option area is a screen region where an option
will be displayed. Its fields identify the option that will
appear there.

A counter area is a screen region that will indicate
the number of options currently selected in a contest; this
enables the interface to provide feedback on undervoting.
A counter area is associated with a group and points to
an array of sprites. The number of currently selected
options in the group is used as an index to select a sprite
from the array to display.

A review area is a screen region where currently
selected options will be listed; it has a field to indicate
the group whose selections will be shown. The review
area must provide enough room for up to j options to be
displayed, where j is the capacity of the group. A review
area can also specify a “cursor sprite” to be displayed in
the space for the next option when the group is not full.
This allows a review area for a write-in group to serve as
a text entry area, in which a cursor appears in the space
where the next character will be added.

The screen locations for pasting all these sprites (over-
lays for states, options for option areas and review areas,
and sprites for counter areas) are not given in the ballot
model; they are specified in the array of slots in the
page’s corresponding layout. Each state, option area, and
counter area uses one slot. Each review area uses j ×
(1 + k) slots, where j is the capacity of the group and
k is the capacity of write-ins for options in the group.
(A write-in group cannot itself contain write-in options;
thus, for a review area for a write-in group, k is zero.)
Each block of 1 + k slots is used to display a selected
option: the option’s sprite goes in the first slot, and if the
option is a write-in, the characters of the entered text go
in the remaining k slots, which are typically positioned
within the first slot. If there are i currently selected
options in the group, option sprites appear in the first i
of the j blocks. If there is a cursor sprite, it is pasted into
the first slot of block i + 1 when the group is not full.

Bindings
The lists of bindings in pages and states specify

behaviour in response to user input. Each binding con-

sists of three parts: stimulus, conditions, and response.
There are two kinds of stimuli: a keypress, which is

represented as an integer key code, and a screen touch,
which is translated into a target index by looking up the
screen coordinates of the touch point in the layout’s list
of targets. A binding can specify either a key code or a
target index or both.

Each binding can have a list of associated conditions;
the binding applies only if all the conditions are satisfied.
A condition can test whether a particular group is empty
or full or whether a particular option is selected.

The response consists of three parts, all optional:
selection operations, audio feedback, and navigation.
The selection operations are specified as a series of steps,
where a step selects or deselects an option, appends a
character to a write-in, deletes the last character, or clears
a group. The audio feedback is given as an array of audio
segments to play. Navigation is specified as the index of
a new page and state.

Bindings for the current state take precedence over
bindings for the current page. When the user provides a
stimulus, at most one binding is invoked: the bindings for
the state and then the page are scanned in order, and the
response is carried out for the first binding that matches
the stimulus and has all its conditions satisfied.

Audio segments
Audio feedback is specified as a list of segments. A

segment can play a fixed clip, the clip associated with a
specified option, all the clips associated with the options
that are selected in a specified group, or a clip chosen
based on the number of options that are selected in a
specified group. When a clip associated with an option
is played, if the option is a write-in option, the clip for
each character in the contents of the write-in field is also
played. More than one clip can be associated with an
option (for example, each candidate could have a short
description and a long description).

At any given moment, at most one clip can be playing
at a time; there is a play queue for clips waiting to be
played next. Whenever a clip finishes playing, the next
clip from the queue immediately begins to play, until the
queue is empty. Invoking a binding always interrupts any
currently playing clip and clears the play queue. The
audio segments for the binding, if any, are queued first;
if a state transition occurs, the audio segments for the
newly entered state are queued next.

Each segment has a list of conditions (the same as in a
binding) that must all be satisfied in order for the segment
to be queued; otherwise, the segment is skipped. The
conditions are evaluated when the segment list is being
queued (i. e. immediately after carrying out the selection
steps of a binding, immediately after entering a new state,
or when a timeout occurs).

LEGENDaudio datavideo data ballot model

navigatorvideo driver

event loop

display

touch sensor
x, y

write(selections)
software
module

hardware
device

ballot definition

one-way data flow

vote recorder

touch(target_i)
press(key)
timeout()

headphones

keypad
key

audio driver

play(clip_i)
stop()

goto(layout_i)
paste(sprite_i, slot_i)

storage device
or printer

lo
ca

te
(x

, y
) target_i ne

xt
()

Figure 2: Block diagram of the virtual machine. The five software modules in bold generate and run the user interface.
The arguments clip i, layout i, sprite i, target i, key, x, and y are integers; selections is an array of arrays of integers.

5.2 Virtual Machine

The VM is composed of five software modules: the
navigator, the audio driver, the video driver, the event
loop, and the vote recorder (Figure 2). Two additional
components not visible in Figure 2 are the ballot loader,
which deserializes the ballot definition into memory, and
the ballot verifier, which checks the ballot definition.
The loader and verifier complete their work before the
voting session begins (i. e. before any interaction with
the voter). The verifier is responsible for ensuring that
the ballot definition is sufficiently well-formed that the
VM will not crash or become unresponsive during the
voting session.

Each component has limited responsibilities, and there
are limited data flows between components.

The event loop maintains no state and handles all
incoming events, which are of four types:

• Keypresses: Upon receiving a keypress event, the
event loop sends a press message to the navigator.

• Screen touches: Upon receiving a touch event, the
event loop sends a locate message to the video
driver to translate the touch coordinates into a target
index, then passes this target index to the navigator
in a touch message.

• Audio notifications: Upon receiving notification
that a sound clip has finished playing, the event loop
sends a next message to the audio driver.

• Timer notifications: Upon receiving notification
that the timer has expired, if no sound clip is
currently playing, the event loop sends a timeout
message to the navigator to indicate that the ballot’s
specified timeout has passed with no activity.

Whenever it receives any event, the event loop resched-
ules a timer notification event according to the timeout
duration in the ballot definition.

The navigator keeps track of the current page and
state and the current selections in each group, and has no
other state. The navigator responds to three messages:

• touch(target i): Find the first operative binding for
the current state or page that matches the given
target, and invoke it.

• press(key): Find the first operative binding for
the current state or page that matches the given
keypress, and invoke it.

• timeout(): Add the current state’s timeout audio
segments to the play queue, and follow the current
state’s timeout transition, if one is specified.

The navigator sends five messages to other modules:

• goto(layout i) is sent to the video driver upon tran-
sition to a page. The layout index is the same as the
page index (the array of layouts in the video data
parallels the array of pages in the ballot model).

• paste(sprite i, slot i) is sent to the video driver to
paste sprites into slots as necessary for states, option
areas, counter areas, and review areas. sprite i is the
index of a sprite in the array of sprites in the video
data; slot i is the index of a slot in the current layout.

• play(clip i) is sent to the audio driver to queue a clip
to be played on the headphones. clip i is the index of
an audio clip in the array of clips in the audio data.

• stop() is sent to the audio driver to stop the cur-
rently playing clip.

• write(selections) is sent to the vote recorder to
record the user’s selections. selections is an array of

arrays of integers: one array for each group, listing
the indices of the selected options in that group.

The audio driver maintains a queue of audio clips to
be played, and has no other state. It responds to three
messages:

• play(clip i): If nothing is currently playing, imme-
diately begin playing the specified clip; otherwise
queue the specified clip to be played.

• next(): If there are any clips waiting in the queue,
start playing the next one.

• stop(): Stop whatever is currently playing and clear
the queue.

The audio driver sends no messages to other modules;
however, whenever it starts playing a clip, it schedules
an audio notification event for the event loop to receive
when the clip finishes playing. The audio driver also
exposes a flag that the event loop can read to determine
whether a sound clip is currently being played.

The video driver maintains just one piece of state,
the index of the current layout. It responds to three
messages:

• goto(layout i): Copy the full-screen image for the
given layout into the video display’s frame buffer
and remember this as the current layout.

• paste(sprite i, slot i): Copy the given sprite into the
frame buffer at the position specified by the given
slot in the current layout.

• locate(x, y): Find and return the index of the first
target that contains the given point in the current
layout’s list of targets, or an error code if the point
does not fall within any target.

The video driver sends no messages to other modules.
The vote recorder maintains no state and responds to

only one message:

• write(selections): Record the voter’s selections.

The vote recorder records votes as appropriate for the
type of voting machine (e. g. printing a ballot, marking a
ballot, or directly recording votes in electronic storage).

6 Implementation

Pvote is a Python [10] implementation of the design
described here. Pvote can run on Linux, MacOS,
and Windows. Graphics and sound are handled by
Pygame [9], an open-source multimedia library for
Python. Touchscreen input is simulated using the
mouse, and hardware button input is simulated using
the keyboard.

Pvote is written to be deployed as an electronic ballot
printer. In Pvote, the vote recorder prints out a textual
description of the voter’s selections. Each time Pvote
runs, it prints at most one ballot (to standard output) and
then enters a terminal state. The source code for Pvote
and a sample ballot definition file are available online at
http://pvote.org/.

6.1 Code Size
The entire Pvote implementation is 460 lines long, not
counting comments and blank lines. The breakdown of
module sizes is as follows:

ballot loader 137 lines
ballot verifier 96 lines
subtotal (pre-voting) 233 lines

event loop 25 lines
navigator 120 lines
audio driver 35 lines
video driver 22 lines
subtotal (voting) 202 lines

vote recorder 25 lines
total 460 lines

6.2 Dependencies
Pvote is written in a small subset of Python 2.3 called
Pthin, which is specified in the Pvote Assurance Docu-
ment [19]. Pvote uses only one built-in collection type,
the Python list, and only the following built-in functions:

• open and read to read the ballot definition file.
• chr and ord to convert integers to/from characters.
• list to convert strings to lists of characters.
• enumerate and range to iterate over lists.
• len, append, remove, and pop to manipulate lists.

The ballot loader imports the built-in SHA module to
compute and verify a SHA-1 hash of the ballot definition.
The audio and video driver use Pygame functions to
play audio and display images. Aside from these, Pvote
imports no other library modules.

6.3 Functionality
Pvote achieves the functionality goals set out in Section
2.3. Pvote can support a wide range of features in
the voting user interface, including multimodal input
and output and virtually complete flexibility in the style
of audio and visual presentation. Because Pvote uses
prerecorded audio and prerendered images, the ballot can
be presented in any language.

With its generalized actions and conditions, Pvote
offers much more flexibility in the handling of user
input than its touchscreen-only predecessor. Unlike
the previous prototype, Pvote can handle straight-party
voting, dependencies among contests (e. g. in a recall
election, voting for a replacement candidate conditional
on voting “yes” for recalling the incumbent), and condi-
tional navigation (e. g. displaying an undervote warning
page when the voter has not made any selections in a
contest). The ballot designer also has more freedom to
define the interaction for selection and text entry.

To get a rough sense of Pvote’s coverage of ballot
design features, the author examined NIST’s collection
of sample ballots [8], consisting of 373 ballots from
40 U. S. states for elections from 1998 to 2006. The
following table summarizes the ballot features found. All
these features, and hence all the ballots in the collection,
are supported by Pvote’s ballot definition format.

Ballot feature Ballots
Vote for 1 of n 373
Vote for up to k of n (k > 1) 195
Vote for an image (e. g. a state flag) 2
Vote yes or no (referendum, confirmation) 251
Ranked choice (up to 3 choices) 7
Write-in candidate 318
Straight-party vote 60
Cross-endorsed candidates 8
Multi-party primary 5
Party logos 21
Chinese 46
Ilokano 2
Japanese 1
Korean 1
Spanish 54
Vietnamese 1
Multiple languages 53

The longest ballot was a full-face Colorado ballot from
1998 containing 23 offices, 22 judicial confirmations,
and 26 referenda. A ballot from New York allowed the
most votes in a single contest (up to 11 selections).

6.4 Security
Pvote was the subject of a three-day software review
conducted in March 2007. Five computer scientists with
backgrounds in security research and/or electronic voting
participated as reviewers. Four reviewers were present
on the first two days, and three were present on the
third day. The reviewers did not find any bugs in Pvote
itself, though they did find some errors and omissions in
the Pvote Assurance Document [19], which specified the
design assumptions and security claims.

The reviewers all had positive things to say about
their confidence in Pvote. Three reviewers had previ-
ous experience inspecting commercial voting systems.
Among them, two declared greater confidence in Pvote’s
correctness as the UI component of a voting system than
comparable parts of commercial systems; the third felt
he had not spent sufficient time on the review to state a
confidence level, but was convinced that Pvote’s design
would make it easier to argue for its correctness than for
the correctness of other systems.

Pvote has probably received more scrutiny in terms of
reviewer-hours per line of code than most existing voting
software, so the lack of discovered bugs is cause for at
least some confidence. Nonetheless, we can be certain
that it did not receive enough scrutiny to establish full
confidence, because the author intentionally hid three
bugs in the code and the reviewers found only two of
them. A forthcoming report will give further details on
the review and the lessons and insights it yielded.

6.5 Ballot Definition File

Pvote was tested with a sample ballot definition file gen-
erated by a ballot compiler, also written in Python. The
ballot compiler takes a textual description of the contests
and options and produces the necessary images using
the open-source ReportLab toolkit [11] for drawing, text
rendering, and page layout. To construct the audio clips
for the ballot definition, the compiler uses the same
textual description to select fragments from a library of
clips of recorded speech and concatenates the fragments
together as needed. The audio clips in this sample ballot
are recorded from live speech, which is usually preferred
over synthesized speech.

The inclusion of screen images and audio recordings
in the ballot definition yields a large file. The sample bal-
lot contains five contests: two are single-selection races
with six candidates each, one is a multiple-selection race
with five candidates, and two are propositions. Each
proposition has a description of about 100 words, and
the audio of the entire description read aloud is included
in the ballot. All of this compiles to a 69-megabyte
ballot definition file, containing 17 pages at a resolution
of 1024 × 768 pixels and 8 minutes of audio sampled at
22050 Hz. As a rough estimate, a ballot with 20 or 30
contests might occupy a few hundred megabytes.

File sizes this large might seem unwieldy in practice.
However, ballot definition files can be compressed for
transmission (bzip2 compresses this 69-megabyte ballot
to 12.5 megabytes, which is better than a factor of 5),
and ballot definitions can be loaded onto voting machines
using inexpensive SD flash memory cards (one-gigabyte
SD cards can now be purchased for about US$10).

7 Discussion

A theme running throughout this work is the man-
agement of complexity. Complexity is the enemy of
correctness, but it cannot be completely avoided. Preren-
dering the user interface is a strategy for mobilizing the
complexity in a voting system. Rather than embedding
so much complexity in the voting machine, the designer
gains the freedom to move complexity among three
components: the tool that generates the ballot definition
file, the ballot definition, and the VM in the voting
machine. The allocation depends on design choices in
the ballot definition language. For instance, in Pvote, the
task of laying out text on the screen is no longer the job of
the voting machine; it has moved to the ballot generator.
The logic that decides when to play which audio message
is no longer part of the voting machine; it has moved to
the ballot definition.

It is worthwhile to ask what good this does us. Is real
progress achieved by shifting complexity in this way, or
are we merely playing a shell game, hiding complexity
in components that we conveniently choose to ignore?

It matters where complexity resides. For example,
why do software security reviews demand source code?
Source code is certainly easier to review than an exe-
cutable, but convenience alone is not a reason for confi-
dence. If a review of the source code discovers no bugs,
this does not assure the correctness of the executable
unless the compiler is also correct. Figure 3 depicts the
relationship between these three components.

Whenever there is a generative relationship such as
this, with an input, a transform, and an output, reviewers
have a choice: they can inspect the output, or they
can inspect the input and the transform instead. In
this example, the burden of establishing confidence in
the executable is traded for the burden of establishing
confidence in the source code and the compiler. Why
is this trade considered helpful despite the compiler’s
massive complexity? Why trust compilers? For those
who do, a typical reason would be that the compiler
is general-purpose. An application-specific component
with high complexity (the executable) has been traded for

compiler executablesource code

Figure 3: A compiler turns source code into an
executable. Size indicates relative complexity. Rounded
boxes are general-purpose components; sharp-cornered
boxes are application-specific components.

a component that is highly complex but general-purpose
(the compiler), and a component that is application-
specific but much less complex (the source code).

As a framework for an assurance argument, it is
interesting to map out the components in a system in
terms of these generative relationships. Figure 4 shows
such a map for a conventional voting system and for
Pvote. Each arrow in Figure 4 represents a step in a
hierarchical decomposition of the system. At each such
step, one can choose to make an assurance argument
about the output or about both input and transform.

Here are a few dimensions along which components
can be evaluated with respect to the insider threat:

1. Dictated or freely chosen? Are relying parties
forced to use a particular implementation of the
component, or do they have the freedom to choose?
Shifting complexity from a dictated component to
a freely chosen component reduces barriers to con-
fidence. For example, anyone can choose or write
their own tools to decompile and analyze the ballot
definition. In contrast, voters cannot choose to vote
on any equipment they want; they must use the
equipment dictated by election administrators.

2. Hidden or disclosed? Components that are undis-
closed or inherently undisclosable (such as live
running processes) are risky because their correct-
ness cannot be verified. Shifting complexity to a
disclosed component reduces barriers to confidence.

3. Application-specific or general-purpose? Shift-
ing complexity to general-purpose components
sometimes reduces barriers to confidence. Unde-
tected bugs and backdoors may be less likely if the
component is mature, widely used, or well tested
by others, and the testing parallels the intended
use. If one uses a version of the general-purpose
component that was released before the voting
system was conceived, it is harder to imagine how
an insider could have subverted it to meaningfully
influence the outcome.

In the interest of reducing the code that runs in the
voting machine, Pvote trades one language for another:
much of the user interface is specified in a specialized
ballot definition language instead of a general-purpose
programming language like C or Python. Section 3.3
suggested that generality in the ballot definition language
is advantageous as it future-proofs the language defini-
tion. How much generality is beneficial? In the extreme,
one could shrink the VM to nothing at all by declaring
that ballot definitions are just machine code.

Shifting complexity from one programming language
to another is useful only insofar as the target language
provides security-relevant restrictions on what can be

voting machine
source code

running instance
of voting software

ballot definition

electronic voting
user experience

ballot definition
generator

voting machine
executable

voting machine
hardware and OS

running instance
of Python interpreter

running instance
of compiler

Python
interpreter

source code

running instance
of voting VM

prerendered
ballot definition

ballot definition
generator

Python interpreter
executable

running instance
of compiler

voting VM
source code

voting machine
hardware and OS

electronic voting
user experience

disclosed,
general-purpose

undisclosed,
general-purpose

disclosed,
voting-specific

live process,
voting-specific

undisclosed,
voting-specific

live process,
general-purpose

inspectability

ge
ne

ra
lit

y

LEGEND

transform

Shape indicates generality. Shading indicates inspectability.

Arrows indicate transformation.

outputinput

Size indicates relative complexity.

Pvote approach (interpreted code + prerendered user interface)

Conventional approach (compiled code + runtime-generated user interface)

Figure 4: Maps of the origins of the components that determine the correctness of the user experience in electronic
voting. Although relative differences in size are meant to roughly express relative differences in complexity, they are
not to scale. For example, the voting machine source code in the conventional approach is over 60 times larger than
the voting VM source code in Pvote, and the complexity of a C compiler is many times larger still. A notable omission
from this discussion is the long chain of inputs leading to a running instance of a compiler, and its associated risks [7].

expressed. For example, the ballot definition language
contains no concept of the current time and date, and
in general, no way to express behaviour that will be
different at testing time than on election day itself. This
property is essential to the effectiveness of “logic and
accuracy testing,” in which pre-election test behaviour
is assumed to reflect the machine’s actual behaviour on
election day. The PRUI approach greatly reduces the
amount of code that has to be reviewed to establish this
property, because non-determinism can only reside in
the VM, not in the ballot definition. This experience
suggests that restricted domain-specific languages and
languages that support programming in restricted subsets
are powerful tools for verifiable secure system design.

8 Conclusion

This paper has presented a design for voting machine
software that supports user interfaces with synchronized
audio and video, touchscreen input, and accessible
device input. The software can be implemented in a
very small amount of code compared to existing voting
machines, while allowing a high degree of flexibility in
the design of the user interface. This work validates the
prerendered-UI approach by demonstrating that it can
meet both accessibility and security goals.

A major area of future work consists of designing
specific ballots using Pvote’s ballot definition language
and running user studies to measure their usability and
accessibility. The PRUI paradigm offers the freedom
to improve ballot designs based on such studies without
having to change and recertify voting system software.

Also to be developed is a design tool for laying out
ballots and producing ballot definition files.

9 Acknowledgements

I am grateful to David Wagner, Marti Hearst, and Scott
Luebking for their guidance and editing suggestions on
this paper. Scott Luebking and Noel Runyan gave helpful
advice concerning the accessibility of this design. Matt
Bishop, Tadayoshi Kohno, Mark Miller, Dan Sandler,
and Dan Wallach generously volunteered their time to
participate in the Pvote security review.

This work was funded in part by NSF CNS-0524252.

References

[1] Alec Yasinsac, David Wagner, Matt Bishop, Ted Baker,
Breno de Medeiros, Gary Tyson, Michael Shamos, Mike
Burmester. Software Review and Security Analysis of
the ES&S iVotronic 8.0.1.2 Voting Machine Firmware.
Florida Department of State, 2007.

[2] Jon Bentley. Programming Pearls: Little Languages.
Communications of the ACM, 29(8):711–721, Aug. 1986.

[3] David Wagner, David Jefferson, Matt Bishop, Chris
Karlof, Naveen Sastry. Security Analysis of the Diebold
AccuBasic Interpreter, Feb. 2006. http://www.cs.

berkeley.edu/∼daw/papers/accubasic.pdf.
[4] Harri Hursti. Diebold TSx Evaluation: Critical Security

Issues with Diebold TSx, May 2006. http://www.

blackboxvoting.org/BBVtsxstudy.pdf.
[5] Jonathan Bannet, David W. Price, Algis Rudys, Justin

Singer, Dan S. Wallach. Hack-a-Vote: Security Issues
with Electronic Voting Systems. IEEE Security &
Privacy, 2(1):32–37, Jan./Feb. 2004.

[6] Doug Jones. Connecting Work on Threat Analysis to
the Real World. Threat Analyses for Voting System
Categories: A Workshop on Rating Voting Meth-
ods, 2006. http://www.cs.uiowa.edu/∼jones/

voting/VSRW06.pdf.
[7] Ken Thompson. Reflections on Trusting Trust. Com-

munications of the ACM, 27(8):761–763, Aug. 1984.
[8] NIST and Richard G. Niemi. Sample State and Local

Ballots. http://vote.nist.gov/ballots.htm.
[9] Pygame. http://pygame.org/.

[10] Python Software Foundation. Python. http://www.

python.org/.
[11] ReportLab, Inc. ReportLab Toolkit. http://www.

reportlab.org/.
[12] Noel H. Runyan. Improving Access to Voting: A Report

on the Technology for Accessible Voting Systems.
Demos and Voter Action, Feb. 2007. http://demos.

org/pubs/improving access.pdf.
[13] Ted Selker. Voting Technology: Election Auditing is an

End-to-End Procedure. Science, 308(5730):1873–1874,
Jun. 2005.

[14] Molly F. Story. Maximizing Usability: The Principles
of Universal Design. Assistive Technology, 10(1):4–12,
1998.

[15] Tadayoshi Kohno, Adam Stubblefield, Aviel D. Rubin,
Dan S. Wallach. Analysis of an Electronic Voting
System. In Proceedings of the IEEE Symposium on
Security and Privacy, 2004.

[16] RABA Technologies. Trusted Agent Report: Diebold
AccuVote-TS Voting System, Jan. 2004. http://www.

raba.com/press/TA Report AccuVote.pdf.
[17] U. S. Election Assistance Commission. 2005 Voluntary

Voting System Guidelines, Dec. 2005. http://www.

eac.gov/vvsg intro.htm.
[18] U. S. Election Assistance Commission. Draft Usability

and Accessibility Requirements for 2007 Voluntary
Voting System Guidelines. NIST, Dec. 2006. http:

//vote.nist.gov/VVSG-HFP.pdf.
[19] Ka-Ping Yee. Pvote Software Review Assurance

Document. UC Berkeley EECS Technical Report 2007-
40, Apr. 2007. http://www.eecs.berkeley.edu/

Pubs/TechRpts/2007/EECS-2007-40.html.
[20] Ka-Ping Yee, David Wagner, Marti Hearst, and Steven

Bellovin. Prerendered User Interfaces for Higher-
Assurance Electronic Voting. In Proceedings of the
Electronic Voting Technology Workshop, 2006.

