
B Pvote source code

The following pages present the source code of Pvote,

consisting of seven modules:

• main.py

• Ballot.py

• verifier.py

• Navigator.py

• Audio.py

• Video.py

• Printer.py

Each line of code is numbered and printed in monospaced type.

42 self.bindings = get list(stream, Binding)

Defining occurrences of classes, methods, and functions appear

in bold.

127 def get enum(stream, cardinality):

Lines marked with a triangle are entry points into a module,

called from other modules. Functions and methods without a

triangle are called only from within the same module.

48! def press(self, key):

The code is broken into sections, with explanatory text in grey

preceding each section.

Explanatory text looks like this.

Reviewers’ comments, from the Pvote security review, are

marked with bullets and shown in grey italic text after the

section to which they refer.

• Reviewers’ notes look like this.

217



main.py

This is the main Pvote program. It initializes the other software
components with the provided ballot definition file and then processes
incoming Pygame events in a non-terminating loop.

1 import Ballot, verifier, Audio, Video, Printer, Navigator, pygame

These two constants are the type IDs of user-defined events. An
AUDIO DONE event signals that an audio clip has finished playing. A
TIMER DONE event signals that a timed delay has elapsed.

2 AUDIO DONE = pygame.USEREVENT
3 TIMER DONE = pygame.USEREVENT + 1

•

•
•

Reviewers suggested that all constants be moved into a separate
module; thus, for example, both main.py and Audio.py would refer to
the same AUDIO DONE constant instead of redundantly defining it in
both files.

The following lines load the ballot definition, verify it, and then
instantiate the other parts of Pvote with their corresponding sections of
the ballot definition.

4 ballot = Ballot.Ballot(open("ballot"))
5 verifier.verify(ballot)
6 audio = Audio.Audio(ballot.audio)
7 video = Video.Video(ballot.video)
8 printer = Printer.Printer(ballot.text)
9 navigator = Navigator.Navigator(ballot.model, audio, video, printer)

Pvote source code 218



This is the main event loop. The loop begins by updating the display to
match the framebuffer in memory, so that any display changes made
during the last iteration appear onscreen. The loop never exits.

10 while 1:
11 pygame.display.update()

On each iteration, one event is retrieved from Pygame’s event queue. A
timeout is scheduled before waiting for the event, so that if no events
occur in timeout ms milliseconds, a TIMER DONE event will be posted.
This timeout is then cancelled so that a timer event cannot occur while
other processing is taking place.

12 pygame.time.set timer(TIMER DONE, ballot.model.timeout ms)
13 event = pygame.event.wait()
14 pygame.time.set timer(TIMER DONE, 0)

Keypresses are handled by the navigator’s press() method. Touches on
the touchscreen are handled by looking for a corresponding target; if one
is found, the event is handled by the navigator’s touch() method.

15 if event.type == pygame.KEYDOWN:
16 navigator.press(event.key)
17 if event.type == pygame.MOUSEBUTTONDOWN:
18 [x, y] = event.pos
19 target i = video.locate(x, y)
20 if target i != None:
21 navigator.touch(target i)

The audio driver schedules an AUDIO DONE event to be posted whenever
an audio clip finishes playing. Upon receipt of such an event, the audio
driver’s next() method is called so that any audio clips waiting to be
played next can start playing.

22 if event.type == AUDIO DONE:
23 audio.next()

If a TIMER DONE event was received, that means there has been no user
activity for timeout ms milliseconds. It also means that no AUDIO DONE
event has occurred for timeout ms milliseconds, which means that
either the audio is silent or that a clip has been playing for longer than
timeout ms milliseconds. If the playing flag on the audio driver is
zero, that means the timeout period has elapsed since the last user input
occurred or last audio clip finished.

24 if event.type == TIMER DONE and not audio.playing:
25 navigator.timeout()

Pvote source code 219



Ballot.py

The Ballot module defines the ballot definition data structure. The
main program instantiates a Ballot object to deserialize the ballot data
from a file stream and construct the ballot definition data structure. All
the other classes in this module represent parts of the ballot definition;
each one deserializes its contents from the stream passed to its
constructor.

1 import sha

2 class Ballot:
3! def init (self, stream):
4 assert stream.read(8) == "Pvote\x00\x01\x00"
5 [self.stream, self.sha] = [stream, sha.sha()]

In order to produce a SHA-1 hash of all the ballot data, the Ballot object
passes self as the stream object to the other constructors. Its read
method allows it to proxy for the original stream, allowing it to
incorporate all the data into the hash as it passes through. After all four
parts of the ballot definition have been loaded, the last 20 bytes of the
stream are checked to ensure they match the hash.

6 self.model = Model(self)
7 self.text = Text(self)
8 self.audio = Audio(self)
9 self.video = Video(self)
10 assert self.sha.digest() == stream.read(20)

11 def read(self, length):
12 data = self.stream.read(length)
13 self.sha.update(data)
14 return data

•

•

•

Reviewers suggested that the read() method would make more sense
if moved into a separate object playing the role of the stream proxy,
instead of using the Ballot itself as the stream proxy. This change
would also prevent the sub-objects from having access to the
incompletely constructed Ballot object during construction.

Each remaining class loads its contents from the stream in a constructor
that parallels its data structure. These constructors instantiate other
classes to read single components from the stream, call get list() to
read a variable-length list of components from the stream, or call
get int(), get enum(), or get str() to deserialize primitive data
types from the stream.

15 class Model:
16 def init (self, stream):
17 self.groups = get list(stream, Group)
18 self.pages = get list(stream, Page)
19 self.timeout ms = get int(stream, 0)

20 class Group:
21 def init (self, stream):
22 self.max sels = get int(stream, 0)
23 self.max chars = get int(stream, 0)
24 self.option clips = get int(stream, 0)
25 self.options = get list(stream, Option)

Pvote source code 220



26 class Option:
27 def init (self, stream):
28 self.sprite i = get int(stream, 0)
29 self.clip i = get int(stream, 0)
30 self.writein group i = get int(stream, 1)

31 class Page:
32 def init (self, stream):
33 self.bindings = get list(stream, Binding)
34 self.states = get list(stream, State)
35 self.option areas = get list(stream, OptionArea)
36 self.counter areas = get list(stream, CounterArea)
37 self.review areas = get list(stream, ReviewArea)

38 class State:
39 def init (self, stream):
40 self.sprite i = get int(stream, 0)
41 self.segments = get list(stream, Segment)
42 self.bindings = get list(stream, Binding)
43 self.timeout segments = get list(stream, Segment)
44 self.timeout page i = get int(stream, 1)
45 self.timeout state i = get int(stream, 0)

46 class OptionArea:
47 def init (self, stream):
48 self.group i = get int(stream, 0)
49 self.option i = get int(stream, 0)

50 class CounterArea:
51 def init (self, stream):
52 self.group i = get int(stream, 0)
53 self.sprite i = get int(stream, 0)

54 class ReviewArea:
55 def init (self, stream):
56 self.group i = get int(stream, 0)
57 self.cursor sprite i = get int(stream, 1)

58 class Binding:
59 def init (self, stream):
60 self.key = get int(stream, 1)
61 self.target i = get int(stream, 1)
62 self.conditions = get list(stream, Condition)
63 self.steps = get list(stream, Step)
64 self.segments = get list(stream, Segment)
65 self.next page i = get int(stream, 1)
66 self.next state i = get int(stream, 0)

67 class Condition:
68 def init (self, stream):
69 self.predicate = get enum(stream, 3)
70 self.group i = get int(stream, 1)
71 self.option i = get int(stream, 0)
72 self.invert = get enum(stream, 2)

73 class Step:
74 def init (self, stream):
75 self.op = get enum(stream, 5)
76 self.group i = get int(stream, 1)
77 self.option i = get int(stream, 0)

Pvote source code 221



78 class Segment:
79 def init (self, stream):
80 self.conditions = get list(stream, Condition)
81 self.type = get enum(stream, 5)
82 self.clip i = get int(stream, 0)
83 self.group i = get int(stream, 1)
84 self.option i = get int(stream, 0)

85 class Text:
86 def init (self, stream):
87 self.groups = get list(stream, TextGroup)

88 class TextGroup:
89 def init (self, stream):
90 self.name = get str(stream)
91 self.writein = get enum(stream, 2)
92 self.options = get list(stream, get str)

93 class Audio:
94 def init (self, stream):
95 self.sample rate = get int(stream, 0)
96 self.clips = get list(stream, Clip)

The Clip type contains the waveform data for an audio clip, which
resides in a single Python string. In a serialized ballot definition, the
number of samples is stored preceding the audio data. Since each sample
is a 16-bit value, the number of bytes to read is twice the number of
samples.

97 class Clip:
98 def init (self, stream):
99 self.samples = stream.read(get int(stream, 0)*2)

100 class Video:
101 def init (self, stream):
102 self.width = get int(stream, 0)
103 self.height = get int(stream, 0)
104 self.layouts = get list(stream, Layout)
105 self.sprites = get list(stream, Image)

106 class Layout:
107 def init (self, stream):
108 self.screen = Image(stream)
109 self.targets = get list(stream, Rect)
110 self.slots = get list(stream, Rect)

An Image object contains the pixel data for an image, which resides in a
single Python string. In serialized form, the image’s width and height are
stored preceding the pixel data, which contains three bytes per pixel (one
byte each for the red, green, and blue components).

111 class Image:
112 def init (self, stream):
113 self.width = get int(stream, 0)
114 self.height = get int(stream, 0)
115 self.pixels = stream.read(self.width*self.height*3)

116 class Rect:
117 def init (self, stream):
118 self.left = get int(stream, 0)
119 self.top = get int(stream, 0)
120 self.width = get int(stream, 0)
121 self.height = get int(stream, 0)

Pvote source code 222



The get int() function reads an unsigned 4-byte integer from the
stream. The allow none argument is a flag specifying whether the
returned value can be None, which is represented by the sequence
"\xff\xff\xff\xff". This function ensures that the data meets the
constraints given in the assurance document—namely, that the value is
between 0 and 231 − 1 inclusive, or None only for fields that allow it.

122 def get int(stream, allow none):
123 [a, b, c, d] = list(stream.read(4))
124 if ord(a) < 128:
125 return ord(a)*16777216 + ord(b)*65536 + ord(c)*256 + ord(d)
126 assert allow none and a + b + c + d == "\xff\xff\xff\xff"

• Reviewers suggested that it would be clearer to have two separate
methods (for reading an integer and reading an integer-or-None)
instead of using get int() for both purposes.

• Reviewers agreed that there should be an explicit return None
statement to show that None is the intended return value.

The get enum() function reads an enumerated type from the stream,
which is represented the same way as an integer. The second argument
gives the cardinality of the enumeration, which is used to ensure the
validity of the returned value.

127 def get enum(stream, cardinality):
128 value = get int(stream, 0)
129 assert value < cardinality
130 return value

• Reviewers suggested that it would be clearer to have two separate
methods for reading Boolean values and enumerated values, instead of
using get enum(stream, 2) to read Boolean values.

The get str() function reads a string from the stream, which is
represented as a sequence of bytes prefixed by the length as a 4-byte
integer. This function checks that all the characters in the string fall in
the printable ASCII range, so they will print out in a predictable way. The
tilde character (number 126) is specifically excluded to avoid any
ambiguity in the printed output, because the tilde is used as a delimiter.

131 def get str(stream):
132 str = stream.read(get int(stream, 0))
133 for ch in list(str):
134 assert 32 <= ord(ch) <= 125
135 return str

•

•

Reviewers suggested that the condition in line 134 would be easier to
understand if it were written isprint(ch) and ch != ’~’.

The get list() function reads a variable-length list of data structures
from the stream, all of a particular given class. In Python (and Pthin),
classes are first-class objects and can be passed as arguments. In
serialized form, the list is preceded by a 4-byte integer indicating how
many elements to read.

136 def get list(stream, Class):
137 return [Class(stream) for i in range(get int(stream, 0))]

Pvote source code 223



verifier.py

The verifier module contains only one entry point, verify(), whose
responsibility is to abort the program if the ballot definition is not
well-formed. The intention is that, if execution continues after a call to
verify(), it should never abort thereafter—that is: (a) verify() checks
all the assumptions about the ballot definition upon which the rest of
Pvote relies; and (b) the contents of the ballot definition data structures
are never changed after verify() is called.

1! def verify(ballot):
2 [groups, sprites] = [ballot.model.groups, ballot.video.sprites]

option sizes contains one list corresponding to each group; it will
collect all the sprites for the options in that group and all the slots in
which such options could be pasted (in option areas and review areas).
char sizes also contains one list for each group; it will collect all the
sprites for characters corresponding to write-in options in the group, as
well as all the slots in which such characters could be pasted (in review
areas). These lists will later be checked to ensure that the sizes of all
sprites match the sizes of all the slots into which they could be pasted.

3 option sizes = [[] for group in groups]
4 char sizes = [[] for group in groups]

The following lines ensure that the parallel arrays have matching size. It
also makes sure that they are also nonempty; for example, the navigator
assumes that there is at least one page when it starts up with a transition
to page 0.

5 assert len(ballot.model.groups) == len(ballot.text.groups) > 0
6 assert len(ballot.model.pages) == len(ballot.video.layouts) > 0

For each page, the list of bindings are checked. Each page also has to
have at least one state.

7 for [page i, page] in enumerate(ballot.model.pages):
8 layout = ballot.video.layouts[page i]

9 for binding in page.bindings:
10 verify binding(ballot, page, binding)
11 assert len(page.states) > 0

For each state, the segments and bindings are checked. The sprite is
checked to make sure it exactly fills its slot, and the timeout transition is
also checked for validity.

12 for [state i, state] in enumerate(page.states):
13 verify size(sprites[state.sprite i], layout.slots[state i])
14 verify segments(ballot, page, state.segments)
15 for binding in state.bindings:
16 verify binding(ballot, page, binding)
17 verify segments(ballot, page, state.timeout segments)
18 verify goto(ballot, state.timeout page i, state.timeout state i)
19 slot i = len(page.states)

Pvote source code 224



Each option area is checked for a valid option reference, and the option
slots are gathered into the appropriate array for later size checking.

20 for area in page.option areas:
21 verify option ref(ballot, page, area)
22 option sizes[area.group i].append(layout.slots[slot i])
23 slot i = slot i + 1

For each counter area, all the possible sprites that could be pasted are
checked to ensure they exactly fill the slot.

24 for area in page.counter areas:
25 for i in range(groups[area.group i].max sels + 1):
26 verify size(sprites[area.sprite i + i], layout.slots[slot i])
27 slot i = slot i + 1

For each review area, the slots for options and characters are gathered
into the appropriate array for later size checking. If there is a cursor
sprite, its size is expected to match the option slots as well.

28 for area in page.review areas:
29 for i in range(groups[area.group i].max sels):
30 option sizes[area.group i].append(layout.slots[slot i])
31 slot i = slot i + 1
32 for j in range(groups[area.group i].max chars):
33 char sizes[area.group i].append(layout.slots[slot i])
34 slot i = slot i + 1
35 if area.cursor sprite i != None:
36 option sizes[area.group i].append(sprites[area.cursor sprite i])

The sprites for all the options and characters are gathered into the
appropriate arrays. The audio clip indices for the options are ensured to
be within range. For write-in options, the number of allowed write-in
characters in the parent group is checked to ensure it matches the
number of allowed selections in the write-in group; thus, all the write-in
options in a group are required to accept the same number of characters.
Write-in groups are not themselves allowed to contain write-ins.

37 for [group i, group] in enumerate(groups):
38 for option in group.options:
39 option sizes[group i].append(sprites[option.sprite i])
40 option sizes[group i].append(sprites[option.sprite i + 1])
41 assert group.option clips > 0
42 ballot.audio.clips[option.clip i + group.option clips - 1]
43 if option.writein group i != None:
44 writein group = groups[option.writein group i]
45 assert writein group.max chars == 0
46 assert writein group.max sels == group.max chars > 0
47 for option in writein group.options:
48 char sizes[group i].append(sprites[option.sprite i])

The sprites and slots that have been collected for each group are now
checked to ensure they all have matching sizes.

49 for object in option sizes[group i]:
50 verify size(object, option sizes[group i][0])
51 for object in char sizes[group i]:
52 verify size(object, char sizes[group i][0])

Pvote source code 225



The text section is checked to ensure that every option has a name, and
ensure that the group names and option names have reasonable lengths
that will print properly.

53 for [group i, group] in enumerate(ballot.text.groups):
54 assert len(group.name) <= 50
55 assert len(group.options) == len(groups[group i].options)
56 for option in group.options:
57 assert len(option) <= 50

Every audio clip is checked to ensure that it has nonzero length. There is
no Pvote code that relies on this property; Pygame has the an
unfortunate limitation that the audio system will abort if asked to play a
zero-length sound.

58 for clip in ballot.audio.clips:
59 assert len(clip.samples) > 0

Finally, the video section is checked. The background images must match
the screen size, all the slots and targets must fit entirely onscreen, and
the image data for each sprite must match the sprite’s claimed
dimensions.

60 assert ballot.video.width*ballot.video.height > 0
61 for layout in ballot.video.layouts:
62 verify size(layout.screen, ballot.video)
63 for rect in layout.targets + layout.slots:
64 assert rect.left + rect.width <= ballot.video.width
65 assert rect.top + rect.height <= ballot.video.height
66 for sprite in ballot.video.sprites:
67 assert len(sprite.pixels) == sprite.width*sprite.height*3 > 0

The verify binding() function checks that a binding is well-formed by
inspecting each of its parts: its list of conditions, its list of steps, its list
of audio segments, and its transition.

68 def verify binding(ballot, page, binding):
69 for condition in binding.conditions:
70 verify option ref(ballot, page, condition)
71 for step in binding.steps:
72 verify option ref(ballot, page, step)
73 verify segments(ballot, page, binding.segments)
74 verify goto(ballot, binding.next page i, binding.next state i)

The verify goto() function checks that the page index and state index
for a transition are within range. None is an allowed value for the page
index.

75 def verify goto(ballot, page i, state i):
76 if page i != None:
77 ballot.model.pages[page i].states[state i]

Pvote source code 226



The verify segments() function checks that a list of segments is
well-formed. It inspects each segment’s list of conditions and, based on
the segment type, ensures that all the possible corresponding indices of
audio clips are within range.

78 def verify segments(ballot, page, segments):
79 for segment in segments:
80 for condition in segment.conditions:
81 verify option ref(ballot, page, condition)
82 ballot.audio.clips[segment.clip i]
83 if segment.type in [1, 2, 3, 4]:
84 group = verify option ref(ballot, page, segment)
85 if segment.type in [1, 2]:
86 assert segment.clip i < group.option clips
87 if segment.type in [3, 4]:
88 ballot.audio.clips[segment.clip i + group.max sels]

•

•

•

•

Reviewers wanted to see meaningfully named constants here for the
enumerated values. They recommended that all the enumerated value
constants should be pulled out into a separate module—thus, for
example, the above code and the navigator code would refer to the
same set of SG * constants.

The verify option ref() function checks the validity of an (indirect
or direct) option reference in a condition, step, or segment—all of these
types have a group i field and an option i field. If the group i field is
None, then option i must be the index of a valid option area on the
current page. Otherwise, group i and option i must be valid group
and option indices respectively. The group object is returned as a
convenience for verify segments(), which uses the group object for
other checks.

89 def verify option ref(ballot, page, object):
90 if object.group i == None:
91 area = page.option areas[object.option i]
92 return ballot.model.groups[area.group i]
93 ballot.model.groups[object.group i].options[object.option i]
94 return ballot.model.groups[object.group i]

The verify size() function ensures that two objects (sprites or slots)
have the same dimensions.

95 def verify size(a, b):
96 assert a.width == b.width and a.height == b.height

Pvote source code 227



Navigator.py

The first three lines set up constants corresponding to the three
enumerated types in the ballot model definition: OP * for step types,
SG * for audio segment types, and PR * for predicates in conditions.

1 [OP ADD, OP REMOVE, OP APPEND, OP POP, OP CLEAR] = range(5)
2 [SG CLIP, SG OPTION, SG LIST SELS, SG COUNT SELS, SG MAX SELS] = range(5)
3 [PR GROUP EMPTY, PR GROUP FULL, PR OPTION SELECTED] = range(3)

The navigator is initialized with access to the ballot model data
structure, audio driver, video driver, and printing module. It saves these
references locally, initializes an empty selection state, and begins the
voting session by transitioning to state 0 of page 0.

4 class Navigator:
5! def init (self, model, audio, video, printer):
6 self.model = model
7 [self.audio, self.video, self.printer] = [audio, video, printer]
8 self.selections = [[] for group in model.groups]
9 self.page i = None
10 self.goto(0, 0)

The goto() method transitions to a given state and page. It is called by
invoke() and timeout(). If the transition goes to the last page, the
voter’s selections are committed. Any state transition (even a transition
back to the current state) triggers the playback of the state’s audio
segments; the play() method queues the audio instantaneously for later
playback. In the ballot definition, page i can be None to indicate that no
transition should occur; that case is accepted and handled here. Other
methods rely on goto() to always update the video display with a call to
update(), even if no state transition occurs.

11 def goto(self, page i, state i):
12 if page i != None and self.page i != len(self.model.pages) - 1:
13 if page i == len(self.model.pages) - 1:
14 self.printer.write(self.selections)
15 [self.page i, self.page] = [page i, self.model.pages[page i]]
16 [self.state i, self.state] = [state i, self.page.states[state i]]
17 self.play(self.state.segments)
18 self.update()

•

•

Reviewers found the logic of line 12 confusing, as it combines the “no
transition” condition with the “already committed” condition. They all
agreed that the navigator should have a flag that indicates whether
the votes have already been committed, and a separate method that
commits the votes and sets the flag. They also suggested that, to make
the commit condition more obvious, the navigator should start on page
1 and always commit on page 0.

Pvote source code 228



The update() method updates the video display based on the current
page, state, and selections. It tells the video driver to paste the page’s
background image over the entire screen, then lay the state’s sprite on
top of that, and finally fills in any option areas, counter areas, and review
areas on the page, in that order. The indices of the slots are assumed to
be arranged in sequential order, as described in Chapter 7; hence the
variable slot i is incremented in each loop and carried forward to the
next loop. Because review areas occupy a variable number of slots
depending on their group, the review area loop relies on the review()
method to return an appropriately incremented value for slot i.

19 def update(self):
20 self.video.goto(self.page i)
21 self.video.paste(self.state.sprite i, self.state i)

22 slot i = len(self.page.states)
23 for area in self.page.option areas:
24 unselected = area.option i not in self.selections[area.group i]
25 group = self.model.groups[area.group i]
26 option = group.options[area.option i]
27 self.video.paste(option.sprite i + unselected, slot i)
28 slot i = slot i + 1

29 for area in self.page.counter areas:
30 count = len(self.selections[area.group i])
31 self.video.paste(area.sprite i + count, slot i)
32 slot i = slot i + 1

33 for area in self.page.review areas:
34 slot i = self.review(area.group i, slot i, area.cursor sprite i)

The review() method fills in the appropriate sprites for a review area.
The arguments group i and cursor sprite i are parameters of the
review area; slot i should be the index of the review area’s first slot.
The main loop always runs group.max sels times to ensure that
slot i cannot go out of range, and that slot i is incremented by the
correct amount: max sels × (1 + max chars). Each selected option is
pasted into a slot, and then, if the option is a write-in option, a recursive
call to review() fills in the characters of the write-in. If a cursor sprite is
given, it is pasted into the slot just after the last selected option.

35 def review(self, group i, slot i, cursor sprite i):
36 group = self.model.groups[group i]
37 selections = self.selections[group i]
38 for i in range(group.max sels):
39 if i < len(selections):
40 option = group.options[selections[i]]
41 self.video.paste(option.sprite i, slot i)
42 if option.writein group i != None:
43 self.review(option.writein group i, slot i + 1, None)
44 if i == len(selections) and cursor sprite i != None:
45 self.video.paste(cursor sprite i, slot i)
46 slot i = slot i + 1 + group.max chars
47 return slot i

• The reviewers generally found this method to be the most confusing
part of the source code, because of its use of recursion and the
arithmetic involved in determining slot i. They suggested splitting
this into two methods such as review contest() and
review writein(); review contest() would call
review writein() when necessary. Even though there would be
substantial duplication between the two methods, the reviewers felt
that eliminating recursion was more important.

Pvote source code 229



The press() and touch() methods handle incoming events from the
main loop: press() handles keypresses and touch() handles screen
touches. Both methods scan through the bindings of the current state
and page, searching for a binding that matches the pressed key or
touched target and whose conditions are all satisfied. The first such
binding (and only the first such binding) is invoked with a call to the
invoke() method.

48! def press(self, key):
49 for binding in self.state.bindings + self.page.bindings:
50 if key == binding.key and self.test(binding.conditions):
51 return self.invoke(binding)

52! def touch(self, target i):
53 for binding in self.state.bindings + self.page.bindings:
54 if target i == binding.target i and self.test(binding.conditions):
55 return self.invoke(binding)

• Reviewers felt the method names press() and touch() were too
similar and could be made clearer.

The test() method evaluates a list of conditions and returns 1 only if all
the conditions are met. Each of the three predicate types is evaluated in a
separate clause; the cond.invert flag indicates whether to invert the
sense of an individual predicate.

56 def test(self, conditions):
57 for cond in conditions:
58 [group i, option i] = self.get option(cond)
59 if cond.predicate == PR GROUP EMPTY:
60 result = len(self.selections[group i]) == 0
61 if cond.predicate == PR GROUP FULL:
62 max = self.model.groups[group i].max sels
63 result = len(self.selections[group i]) == max
64 if cond.predicate == PR OPTION SELECTED:
65 result = option i in self.selections[group i]
66 if cond.invert == result:
67 return 0
68 return 1

•

•
•

Reviewers felt the comparison of Boolean values on line 66 was “just
too clever for its own good.” They agreed that lines 66 and 67 could
have been more clearly written as

if cond.invert:
result = not result

if not result:
return 0

to show that cond.invert reverses the sense of the condition and that
the loop body returns 0 only when the condition is not met.

The invoke() method invokes a binding. The steps of the action are
carried out, then the audio for the binding is queued, and finally the
state transition, if any, takes place. (The goto() method handles the case
where next page i is None.) Invoking a binding always interrupts any
currently playing audio.

69 def invoke(self, binding):
70 for step in binding.steps:
71 self.execute(step)
72 self.audio.stop()
73 self.play(binding.segments)
74 self.goto(binding.next page i, binding.next state i)

Pvote source code 230



The execute() method executes a single step, which operates on the
selection state. It is responsible for ensuring that invalid selection states
are never reached.

75 def execute(self, step):
76 [group i, option i] = self.get option(step)
77 group = self.model.groups[group i]
78 selections = self.selections[group i]
79 selected = option i in selections

80 if step.op == OP ADD and not selected or step.op == OP APPEND:
81 if len(selections) < group.max sels:
82 selections.append(option i)
83 if step.op == OP REMOVE and selected:
84 selections.remove(option i)

85 if step.op == OP POP and len(selections) > 0:
86 selections.pop()
87 if step.op == OP CLEAR:
88 self.selections[group i] = []

•

•

Reviewers felt the Boolean expression on line 80 should be clarified
with parentheses.

• Reviewers found the execute() method more confusing than
necessary because it uses both the list self.selections and a local
variable selections that aliases a part of it. Mixing these two ways of
accessing the list makes it harder to reason about the code, because
each could have side-effects on the other. The method would be easier
to verify if it always accessed the list through just self.selections
or just selections.

• Reviewers felt the method names invoke() and execute() were too
similar and could be made clearer.

The timeout() method handles an inactivity timeout. It is called by the
main event loop.

89! def timeout(self):
90 self.play(self.state.timeout segments)
91 self.goto(self.state.timeout page i, self.state.timeout state i)

Pvote source code 231



The play() method plays a list of audio segments. Its job is to translate
a list of segments into a sequence of audio clip indices, and send these
indices to the audio driver to be queued for playing. Each segment’s
conditions are checked; if the conditions are met, the corresponding clip
index (or indices) are sent to the audio driver. After the clips are queued,
play() returns immediately; it does not wait for the audio to finish
playing, or even to start playing.

92 def play(self, segments):
93 for segment in segments:
94 if self.test(segment.conditions):
95 if segment.type == SG CLIP:
96 self.audio.play(segment.clip i)
97 else:
98 [group i, option i] = self.get option(segment)
99 group = self.model.groups[group i]
100 selections = self.selections[group i]

101 if segment.type == SG OPTION:
102 self.play option(group.options[option i], segment.clip i)
103 if segment.type == SG LIST SELS:
104 for option i in selections:
105 self.play option(group.options[option i], segment.clip i)
106 if segment.type == SG COUNT SELS:
107 self.audio.play(segment.clip i + len(selections))
108 if segment.type == SG MAX SELS:
109 self.audio.play(segment.clip i + group.max sels)

The play option() method sends audio clips for a given option to the
audio driver. There can be multiple clips associated with each option, as
dictated by the option clips field of its containing group; the offset
argument selects which one to play. For a write-in option, this entails
playing, in sequence, all the audio clips for the characters in the write-in.
Write-in characters are assumed to have only one clip each.

110 def play option(self, option, offset):
111 self.audio.play(option.clip i + offset)
112 if option.writein group i != None:
113 writein group = self.model.groups[option.writein group i]
114 for option i in self.selections[option.writein group i]:
115 self.audio.play(writein group.options[option i].clip i)

The get option() method is used by test(), execute(), and play()
to determine the specific group and option for a condition, step, or
segment respectively. Conditions, steps, and segments all have fields
named group i and option i that can refer to an option either directly
or indirectly. When group i is None, it’s an indirect reference: option i
is the index of an option area on the current page. When group i is not
None, it’s a direct reference: group i and option i specify the intended
option.

116 def get option(self, object):
117 if object.group i == None:
118 area = self.page.option areas[object.option i]
119 return [area.group i, area.option i]
120 return [object.group i, object.option i]

Pvote source code 232



Audio.py

Audio playback is provided by the pygame library.

1 import pygame

Pygame is based on an event-loop control model. Instead of invoking
callbacks, Pygame queues events for processing by the application. Each
event has an integer type ID, and Pygame supports user-defined events
with type IDs equal to pygame.USEREVENT or higher. This module uses
AUDIO DONE for signalling when an audio clip has finished playing.

2 AUDIO DONE = pygame.USEREVENT

•

•

Reviewers suggested that constants like these all be collected in a
separate module, and that main.py and Audio.py refer to the same
AUDIO DONE constant instead of redundantly defining it in both files.

The Audio class is responsible for maintaining a queue of audio clips and
causing them to be played in sequence. It ensures that only one clip is
playing at a time, and that all the clips are played back one after another
until the queue is empty.

3 class Audio:

The audio driver is initialized with access to the audio section of the
ballot definition. It initializes the Pygame audio mixer and converts all
the audio clips from raw data into Pygame Sound objects. The playing
flag is exposed to the main program; it indicates whether or not audio is
currently playing.

4! def init (self, audio):
5 rate = audio.sample rate
6 pygame.mixer.init(rate, -16, 0)
7 self.clips = [make sound(rate, clip.samples) for clip in audio.clips]
8 [self.queue, self.playing] = [[], 0]

The play() method puts a single audio clip on the queue. If nothing is
currently playing, playback of the given audio clip immediately begins.

9! def play(self, clip i):
10 self.queue.append(clip i)
11 if not self.playing:
12 self.next()

The next() method takes the next available audio clip off of the queue
and starts playing it. The AUDIO DONE event is scheduled to be posted
when the audio clip finishes playing. The playing member is set to a
nonzero value if and only if an audio clip is playing.

13! def next(self):
14 self.playing = len(self.queue)
15 if len(self.queue):
16 self.clips[self.queue.pop(0)].play().set endevent(AUDIO DONE)

The stop() method stops audio playback and cancels pending audio.

17! def stop(self):
18 self.queue = []
19 pygame.mixer.stop()

Pvote source code 233



The make sound() function converts a string of audio data into a
Pygame Sound object. Because Pygame only knows how to load sounds
from files, and the only uncompressed sound format that Pygame
accepts is the Microsoft WAVE format, we have to construct a fake file
object with a WAVE file header. The header always specifies no
compression, monaural audio, and signed 16-bit samples.

20 def make sound(rate, data):
21 [comp channels, sample size] = ["\x01\x00\x01\x00", "\x02\x00\x10\x00"]
22 fmt = comp channels + put int(rate) + put int(rate*2) + sample size
23 file = chunk("RIFF", "WAVE" + chunk("fmt ", fmt) + chunk("data", data))
24 return pygame.mixer.Sound(Buffer(file))

The chunk() function creates a RIFF chunk, which consists of a 4-byte
type code and a 4-byte length followed by a string of data.

25 def chunk(type, contents):
26 return type + put int(len(contents)) + contents

The put int() function converts an integer into a 4-byte big-endian
representation.

27 def put int(n):
28 [a, b, c, d] = [n/16777216, n/65536, n/256, n]
29 return chr(d % 256) + chr(c % 256) + chr(b % 256) + chr(a % 256)

The Buffer class is a thin wrapper that makes a string look like a
readable file. make sound() wraps this class around the WAVE formatted
audio data so it can be passed to Pygame to create a Sound object.

30 class Buffer:
31 def init (self, data):
32 [self.data, self.pos] = [data, 0]

33 def read(self, length):
34 self.pos = self.pos + length
35 return self.data[self.pos - length:self.pos]

Pvote source code 234



Video.py

Video display control is provided by the pygame library.

1 import pygame

The make image() function converts a string containing uncompressed
pixel data into a Pygame Image object.

2 def make image(im):
3 return pygame.image.fromstring(im.pixels, (im.width, im.height), "RGB")

The Video class is responsible for pasting full-screen images and sprites
onto the display, as well as translating touch locations into target indices.

4 class Video:

The video driver is initialized with access to the video section of the
ballot definition. It initializes the Pygame display and converts all the
images from raw data into Pygame Image objects. The video driver keeps
a pointer to the current layout in its layout member so it can look up
slots and targets for the current page.

5! def init (self, video):
6 size = [video.width, video.height]
7 self.surface = pygame.display.set mode(size, pygame.FULLSCREEN)
8 self.layouts = video.layouts
9 self.screens = [make image(layout.screen) for layout in video.layouts]
10 self.sprites = [make image(sprite) for sprite in video.sprites]
11 self.goto(0)

The goto() method switches to a given layout, which involves pasting
the layout’s background image over the entire screen.

12! def goto(self, layout i):
13 self.layout = self.layouts[layout i]
14 self.surface.blit(self.screens[layout i], [0, 0])

The paste() method pastes a given sprite into a given slot. The slot
coordinates are looked up in the current layout.

15! def paste(self, sprite i, slot i):
16 slot = self.layout.slots[slot i]
17 self.surface.blit(self.sprites[sprite i], [slot.left, slot.top])

The locate() method finds the target index corresponding to a given
touch location. It returns the index of the first enclosing target in the
current layout.

18! def locate(self, x, y):
19 for [i, target] in enumerate(self.layout.targets):
20 if target.left <= x and x < target.left + target.width:
21 if target.top <= y and y < target.top + target.height:
22 return i

Pvote source code 235



Printer.py

The Printer class commits the voter’s selections by printing them out.
(Other vote-recording mechanisms could be substituted for this module.)
It is initialized with access to the text section of the ballot definition.

1 class Printer:
2 def init (self, text):
3 self.text = text

The write() method does the printing, assuming that the standard
output stream is connected to a printer. To prevent any possibility of
ambiguous output, the first character of every printed line indicates its
purpose, and lines never wrap. An asterisk (*) marks a contest, and a
minus sign (-) marks an option. A plus sign (+) marks a write-in group,
and an equals sign (=) marks the text of the write-in. A tilde (~) is printed
after the name of each write-in character because characters can have
names of any length (a feature intended to let ASCII printouts describe
write-ins containing non-ASCII characters.) A tilde on a line by itself
marks the end of the printout. Here is an example of a printout:

* Governor
- Peter Miguel Camejo

* Secretary of State ~ NO SELECTION

* Member of City Council
- William "Bill" G. Glynn
- Write-in 1

+ Member of City Council, Write-in 1
= S~T~E~P~H~E~N~ ~H~A~W~K~I~N~G~

* Proposition 1A
- Yes

~

4! def write(self, selections):
5 for [group i, selection] in enumerate(selections):
6 group = self.text.groups[group i]
7 if group.writein:
8 if len(selection):
9 print "\n+ " + group.name
10 line = ""
11 for option i in selection:
12 if len(line) + len(group.options[option i]) + 1 > 60:
13 print "= " + line
14 line = ""
15 line = line + group.options[option i] + "~"
16 print "= " + line
17 else:
18 if len(selection):
19 print "\n* " + group.name
20 for [option i, option] in enumerate(group.options):
21 if option i in selection:
22 print "- " + option
23 else:
24 print "\n* " + group.name + " NO SELECTION"
25 print "\n~\f"

Pvote source code 236


